RSS-Feed abonnieren
DOI: 10.1055/a-1838-8958
Bromide as the Directing Group for β-Arylation of Thiophenes
We acknowledge funding from the National Natural Science Foundation of China.

Abstract
Direct β-arylation of thiophene derivatives with bromide as directing group is disclosed. The reaction is conducted with PdCl2/(p-tolyl)3P as catalyst, silver carbonate as additive, and aryl iodide as coupling partner, affording brominated biaryl compounds as product. Control experiments indicated that the presence of bromide group enhances the reactivity of the C–H bond, enabling β-arylation. Furthermore, the C–Br bond can be easily converted into many useful functional groups through a wide range of methodologies. The mechanistic study suggests that silver salt plays a key role in the C–H bond-activation step.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1838-8958.
- Supporting Information
Publikationsverlauf
Eingereicht: 18. März 2022
Angenommen nach Revision: 28. April 2022
Accepted Manuscript online:
28. April 2022
Artikel online veröffentlicht:
28. Juni 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Current address: H. H. Zhang, Center for Nanophase Materials Sciences & Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
- 2a Gronowits S, Hornfeldt AB. Thiophenes . Elsevier; Oxford: 2004
- 2b Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347
- 2c Nicolaou KC, Hale CR. H, Nilewski C, Ioannidou HA. Chem. Soc. Rev. 2012; 41: 5185
- 2d Witter DJ, Belvedere S, Chen L, Secrist JP, Mosley RT, Miller TA. Bioorg. Med. Chem. Lett. 2007; 17: 4562
- 3a He C, Fan S, Zhang X. J. Am. Chem. Soc. 2010; 132: 12850
- 3b Gorelsky SI, Lapointe D, Fagnou K. J. Am. Chem. Soc. 2008; 130: 10848
- 3c Kobayashi K, Sugie A, Takahashi M, Masui K, Mori A. Org. Lett. 2005; 7: 5083
- 3d Schipper DJ, Fagnou K. Chem. Mater. 2011; 23: 1594
- 4a Ueda K, Yanagisawa S, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2010; 49: 8946
- 4b Colletto C, Islam S, Julia-Hernandez F, Larrosa I. J. Am. Chem. Soc. 2016; 138: 1677
- 5 Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
- 6 Funaki K, Sato T, Oi S. Org. Lett. 2012; 14: 6181
- 7 Tang DT. D, Collins KD, Glorius F. J. Am. Chem. Soc. 2013; 135: 7450
- 8a Yuan K, Doucet H. Chem. Sci. 2014; 5: 392
- 8b Mao S, Shi X, Soule JF, Doucet H. Eur. J. Org. Chem. 2020; 91
- 9 Tang DT. D, Collins KD, Ernst JB, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 1809
- 10a Meng G, Lam NY. S, Lucas E, Saint-Denis TG, Verma P, Chekshin N, Yu JQ. J. Am. Chem. Soc. 2020; 142: 10571
- 10b Gandeepan P, Muller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 10c Sambiagio C, Schonbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU, Schnurch M. Chem. Soc. Rev. 2018; 47: 6603
- 10d Wencel-Delord J, Droge T, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 11a Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 21: 12898
- 11b Chen XY, Sorensen EJ. J. Am. Chem. Soc. 2018; 140: 2789
- 11c Huang Z, Lim HN, Mo F, Young MC, Dong G. Chem. Soc. Rev. 2015; 44: 7764
- 12 Li B, Seth K, Niu B, Pan L, Yang H, Ge H. Angew. Chem. Int. Ed. 2018; 57: 3401
- 13a Lotz MD, Camasso NM, Canty AJ, Sanford MS. Organometallics 2017; 36: 165
- 13b Whitaker D, Bures J, Larrosa I. J. Am. Chem. Soc. 2016; 138: 8384
- 13c Lee YS, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 15278
- 13d Liu KH, Hu GQ, Wang CX, Sheng FF, Bai JW, Gu JG, Zhang HH. Org. Lett. 2021; 23: 5626
- 14a Li EC, Hu GQ, Zhu YX, Zhang HH, Shen K, Hang XC, Zhang C, Huang W. Org. Lett. 2019; 21: 6745
- 14b Hu GQ, Li EC, Zhang HH, Huang W. Org. Biomol. Chem. 2020; 18: 6627
- 14c Hu GQ, Bai JW, Li EC, Liu KH, Sheng FF, Zhang HH. Org. Lett. 2021; 23: 1554