Subscribe to RSS

DOI: 10.1055/a-1840-5483
α-C–H Photoalkylation of a Glucose Derivative in Continuous Flow
This work is supported by the Carbohydrate Competence Center’s (CCC) ‘CarboBased’ program.

Abstract
Site-selective photoalkylation is a powerful strategy to extend the carbon framework of carbohydrates, otherwise often attainable only through laborious syntheses. This work describes the adaptation and upscaling of the photoalkylation of a glucose derivative as a continuous flow process. The reported iridium catalyst is replaced by an organic sensitizer and the reaction has been carried out on 40-gram scale.
Key words
C–H functionalization - photoredox catalysis - carbohydrates - flow chemistry - hydrogen atom transfer - radicalsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1840-5483.
- Supporting Information
Publication History
Received: 20 March 2022
Accepted after revision: 28 April 2022
Accepted Manuscript online:
02 May 2022
Article published online:
14 June 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Jäger M, Minnaard AJ. Chem. Commun. 2016; 52: 656
- 2 Dimakos V, Taylor MS. Chem. Rev. 2018; 118: 11457
- 3 Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
- 4 Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noёl T. Chem. Rev. 2016; 116: 10276
- 5 Suh CE, Carder HM, Wendlandt AE. ACS Chem. Biol. 2021; 16: 1814
- 6 Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
- 7 Wan IC, Witte MD, Minnaard AJ. Chem. Commun. 2017; 53: 4926
- 8 Dimakos V, Su HY, Garrett GE, Taylor MS. J. Am. Chem. Soc. 2019; 141: 5149
- 9 Sakai K, Oisaki K, Kanai M. Synthesis 2020; 52: 2171
- 10 Sakai K, Oisaki K, Kanai M. Adv. Synth. Catal. 2020; 362: 337
- 11 Gorelik DJ, Turner JA, Virk TS, Foucher DA, Taylor MS. Org. Lett. 2021; 23: 5180
- 12 Li Y, Miyamoto S, Torigoe T, Kuninobu Y. Org. Biomol. Chem. 2021; 19: 3124
- 13 Xiao W, Wang X, Liu R, Wu J. Chin. Chem. Lett. 2021; 32: 1847
- 14 Matsumoto A, Yamamoto M, Maruoka K. ACS Catal. 2022; 12: 2045
- 15 Wang Y, Carder HM, Wendlandt AE. Nature 2020; 578: 403
- 16 Zhang YA, Gu X, Wendlandt AE. J. Am. Chem. Soc. 2022; 144: 599
- 17 Gorelik DJ, Dimakos V, Adrianov T, Taylor MS. Chem. Commun. 2021; 57: 12135
- 18 Dimakos V, Gorelik D, Su HY, Garrett GE, Hughes G, Shibayama H, Taylor MS. Chem. Sci. 2020; 11: 1531
- 19 Turner JA, Rosano N, Gorelik DJ, Taylor MS. ACS Catal. 2021; 11: 11171
- 20 Carder HM, Suh CE, Wendlandt AE. J. Am. Chem. Soc. 2021; 143: 13798
- 21 Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
- 22 Donnelly K, Baumann M. J. Flow Chem. 2021; 11: 223
- 23 Engle S, Kirkner TR, Kelly CB. Org. Synth. 2019; 96: 455
- 24 Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem. Commun. 2019; 55: 5408
- 25 Bryden MA, Zysman-Colman E. Chem. Soc. Rev. 2021; 50: 7587
- 26 Demchenko AV, Pornsuriyasak P, De Meo C. J. Chem. Educ. 2006; 83: 782
- 27 Laudadio G, Noël T. Photochemical transformations in continuous-flow reactors . In Flow Chemistry – Applications, Vol. 2. Darvas F, Dormán G, Hessel V, Ley SV. De Gruyter; Berlin/Boston: 2021: 1-30
-
28 Note: Both the LED chips and water-cooling are available at minimal cost online, making the entire reactor under $500 (pump excluded)
- 29 Hartman RL. Org. Process Res. Dev. 2012; 16: 870
- 30 Wan T, Wen Z, Laudadio G, Noël T. ACS Cent. Sci. 2022; 8: 51
- 31 Buglioni L, Raymenants F, Slattery A, Noël T. Chem. Rev. 2022; 122: 2752