Synthesis 2022; 54(19): 4381-4391
DOI: 10.1055/a-1840-5768
paper

The Synthesis and Application of 2-Cyano and -Ester Containing Anilines: Selective Copper-Catalyzed Reductive Amination, N-Benz­ylation, and Cyclization Reactions

Ziwei Huang
a   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
,
Zirui Lin
a   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
,
Jiexiong Mai
a   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
,
Shaohuan Lv
a   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
,
Feng Xie
a   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
,
Youxue Yuan
b   Guangdong Wamo New Material Technology Co., Ltd, Jiangmen 529020, Guangdong Province, P. R. China
,
Wenbing Zhang
b   Guangdong Wamo New Material Technology Co., Ltd, Jiangmen 529020, Guangdong Province, P. R. China
,
Fan Qian
b   Guangdong Wamo New Material Technology Co., Ltd, Jiangmen 529020, Guangdong Province, P. R. China
,
Bin Li
a   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
› Institutsangaben
We thank the Support of the Foundation of Department of Education of Guangdong Province (No: 2021ZDZX2045, 2020KQNCX093), the Foundation of Graduate Education Innovation Plan of Guangdong Province (No: YJS-JGXM-21-03).


Abstract

A convenient and practical pathway to 2-cyano and 2-ester anilines is described via efficient and selective copper(II)-catalyzed reductive amination via hydrosilylation process. Both 2-cyano and 2-ester anilines were successfully synthesized with good functional group tolerance and high selectivity. The application of the 2-cyano and -iodine containing anilines was developed in the synthesis of indoloindole derivatives via CuSO4-catalyzed N-benzylation and cyclization reaction in ‘one pot’. More interestingly, the photophysical property investigations of these 2-cyano and 2-ester containing anilines exhibit excellent fluorescent properties, which have great potential application in the development of interesting near-ultraviolet optical devices in the near future.

Supporting Information



Publikationsverlauf

Eingereicht: 25. April 2022

Angenommen nach Revision: 02. Mai 2022

Accepted Manuscript online:
02. Mai 2022

Artikel online veröffentlicht:
14. Juni 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1b Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Chem. Rev. 2016; 116: 14181
    • 1c Mayol-Llinàs J, Nelson A, Farnaby W, Ayscough A. Drug Discov. Today 2017; 22: 965
    • 1d Jagadeesh Rajenahally V, Murugesan K, Alshammari Ahmad S, Neumann H, Pohl M.-M, Radnik J, Beller M. Science 2017; 358: 326
    • 1e Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857
    • 1f Ferjancic Z, Saicic RN. Eur. J. Org. Chem. 2021; 22: 3241
    • 2a Cao L, Zhao H, Guan R, Jiang H, Dixneuf PH, Zhang M. Nat. Commun. 2021; 12: 4206
    • 2b Yang J, Zhao H, Tan Z, Cao L, Jiang H, Ci C, Dixneuf PH, Zhang M. ACS Catal. 2021; 11: 9271
    • 2c Xie R, Mao W, Jia H, Sun J, Lu G, Jiang H, Zhang M. Chem. Sci. 2021; 12: 13802
    • 2d Tan Z, Ci C, Yang J, Wu Y, Cao L, Jiang H, Zhang M. ACS Catal. 2020;  10: 5243
    • 2e Feng J.-B, Wu X.-F. Adv. Synth. Catal. 2016; 358: 2179
    • 3a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 3b Zhang D, Liu R, Zhou X. Catal. Sci. Technol. 2018; 8: 5573
    • 3c Chamakuri S, Shah MM, Yang DC. H, Santini C, Young DW. Org. Biomol. Chem. 2020; 18: 8844
    • 3d Wiklund P, Bergman J. Org. Biomol. Chem. 2003; 1: 367
  • 4 Chen C.-Y, He F, Tang G, Yuan H, Li N, Wang J, Faessler R. J. Org. Chem. 2018; 83: 2395
  • 5 Li L, Chua WK. S. Tetrahedron Lett. 2011; 52: 1574
  • 6 Shan X.-H, Yang B, Qu J.-P, Kang Y.-B. Chem. Commun. 2020; 56: 4063
    • 7a Cho BT, Kang SK. Tetrahedron 2005; 61: 5725
    • 7b Kalbasi RJ, Mazaheri O. Catal. Commun. 2015; 69: 86
    • 7c Kalbasi RJ, Mazaheri O. New. J. Chem. 2016; 40: 9627
    • 7d Fiore AM, Romanazzi G, Dell’Anna MM, Latronico M, Leonelli CM, Rizzuti A, Mastrorilli P. Mol. Catal. 2019; 476: 110507
    • 7e Huang M.-Y, Yang J.-M, Zhao Y.-T, Zhu S.-F. ACS Catal. 2019; 9: 5353
    • 7f Kitamura M, Chiba S, Narasaka K. Bull. Chem. Soc. Jpn. 2003; 76: 1063
    • 8a Wei D, Darcel C. Chem. Rev. 2019; 119: 2550
    • 8b Wu J, Tongdee S, Ammaiyappan Y, Darcel C. Adv. Synth. Catal. 2021; 363: 3859
    • 8c Maya RJ, Poulose S, John J, Luxmi R. V. Adv. Synth. Catal. 2017; 359: 1177
    • 9a Lokhande R, Sonawane J, Roy A, Ravishankar L. Green Chem. Lett. Rev. 2011; 4: 69
    • 9b Zhu X, Zhou X, Zhang W. J. Chem. Res. 2015; 39: 390
    • 10a Enthaler S. Catal. Lett. 2011; 141: 55
    • 10b Werkmeister S, Fleischer S, Zhou S, Junge K, Beller M. ChemSusChem 2012; 5: 777
    • 10c Yang L, Lin J, Kang L, Zhou W, Ma D.-Y. Adv. Synth. Catal. 2018; 360: 485
    • 10d Stoll EL, Tongue T, Andrews KG, Valette D, Hirst DJ, Denton RM. Chem. Sci. 2020; 11: 9494
    • 11a Enthaler S. ChemCatChem 2010; 2: 1411
    • 11b Thai TT, Merel DS, Poater A, Gaillard S, Renaud JL. Chem. Eur. J. 2015; 21: 7066
    • 11c Facchini SV, Cettolin M, Bai XS, Casamassima G, Pignataro L, Gennari C, Piarulli U. Adv. Synth. Catal. 2018; 360: 1054
    • 11d Petricci E, Santillo N, Castagnolo D, Cini E, Taddei M. Adv. Synth. Catal. 2018; 360: 2560
    • 12a Li B, Sortais J.-B, Darcel C. Chem. Commun. 2013; 49: 3691
    • 12b Li B, Zheng J, Zeng W, Li Y, Chen L. Synthesis 2017; 49: 1349
    • 12c Zhang B, Liu L, Guo D, Wang J. ChemistrySelect 2019; 4: 1195
    • 12d Makarova M, Afanasyev OI, Kliuev F, Nelyubina YV, Godovikova M, Chusov DJ. J. Organomet. Chem. 2021; 941: 121806
  • 13 Pletz J, Berg B, Breinbauer R. Synthesis 2016; 48: 1301
    • 14a Kukushkin VY, Pombeiro AJ. L. Chem. Rev. 2002; 5: 1771
    • 14b Gushchin PV, Kuznetsov ML, Haukka M, Wang M.-J, Gribanov AV, Kukushkin VY. Inorg. Chem. 2009; 48: 2583
    • 14c Li B, Sortais J.-B, Darcel C, Dixneuf PH. ChemSusChem 2012; 5: 396
  • 15 Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Chen L, Zeng Z, Li X, Jia Y, Wang S, Du Z, Li LS, Zhang Z. Nat. Photonics 2019; 13: 192
  • 16 Zhang F, Silver SH, Noel NK, Ullrich F, Rand BP, Kahn A. Adv. Energy Mater. 2020; 1903252
  • 17 Barlev A, Sen D. Acc. Chem. Res. 2018; 51: 526
  • 18 Chen S, Hu H. Chem. Soc. Rev. 2021; 50: 8639
  • 19 Zhu S, Song Y, Shao J, Zhao X, Yang B. Angew. Chem. Int. Ed. 2015; 54: 14626
  • 20 Qiu Z, Tan J, Cai N, Wang K, Ji S, Huo Y. Chin. J. Org. Chem. 2019; 39: 679
  • 21 Frederik F, Torsten I, Rhett K. J. Am. Chem. Soc. 2019; 141: 11677
  • 22 Hidemasa H, Toshitaka K, Kyoko I, Shoko K, Isao A. Adv. Synth. Catal. 2016; 358: 784
  • 23 Akira M, Takami S, Etsuo O, Takeo H. Heterocycles 1994; 37: 823
  • 24 Patil NT, Wu H, Kadota I, Yamamoto Y. J. Org. Chem. 2004; 69: 8745
  • 25 Rahul N, Gregor J, Chitra S, Jeet K. Org. Biomol. Chem. 2018; 16: 4304
  • 26 Linsenmeier AM, Williams CM, Braese S. J. Org. Chem. 2011; 76: 9127
  • 27 CCDC 2118550 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures