Subscribe to RSS
DOI: 10.1055/a-1850-3687
Palladium-Catalyzed Cross-Coupling of Cyanohydrins with Aryl Bromides: Construction of Biaryl Ketones
We sincerely thank the Natural Sciences and Engineering Research Council (NSERC) for a Discovery Grant and Queen’s University for generous financial support. NSERC is also thanked for supporting a Tier 1 Canada Research Chair (P.A.E.). We also acknowledge the Huxiang High-Level Talent Gathering Project from the Hunan Provincial Science and Technology Department (Grant No. 2020RC5001). Additionally, we thank Queen’s University for R. S. McLaughlin Fellowships (M.-J.T.) and the Government of Ontario for a Queen Elizabeth II Graduate Scholarship in Science and Technology (M.-J.T.) and Ontario Graduate Scholarships (M.-J.T.).
Abstract
The palladium-catalyzed cross-coupling of the lithium anion of aryl tert-butyldimethylsilyl-protected cyanohydrins with aryl bromides followed by in situ deprotection with fluoride ion provides a convenient and versatile approach to biaryl ketones. This protocol represents the first example of a palladium-catalyzed arylation of a cyanohydrin, which functions as an acyl anion equivalent. Hence, in contrast to classical cross-coupling reactions, the pronucleophile component is incorporated in the product to permit further functionalization. We then highlight the synthetic utility of the new method with applications to bioactive biaryl ketones and the construction of a triaryl diketone that has been used to prepare an extended tetrathiafulvalene.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1850-3687.
- Supporting Information
Publication History
Received: 07 May 2022
Accepted after revision: 12 May 2022
Accepted Manuscript online:
12 May 2022
Article published online:
20 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 For a review on bioactive natural benzophenones, see: Wu S.-B, Long C, Kennelly EJ. Nat. Prod. Rep. 2014; 31: 1158
- 2a Romines KR, Freeman GA, Schaller LT, Cowan JR, Gonzales SS, Tidwell JH, Andrews CW, Stammers DK, Hazen RJ, Ferris RG, Short SA, Chan JH, Boone LR. J. Med. Chem. 2006; 49: 727
- 2b Vooturi SK, Cheung CM, Rybak MJ, Firestine SM. J. Med. Chem. 2009; 52: 5020
- 2c Cuquerella MC, Lhiaubet-Vallet V, Cadet J, Miranda MA. Acc. Chem. Res. 2012; 45: 1558
- 2d Common Fragrance and Flavor Materials, 6th ed. Surburg H, Panten J. Wiley-VCH; Weinheim: 2016
- 2e Jhulki S, Seth S, Ghosh A, Chow TJ, Moorthy JN. ACS Appl. Mater. Interfaces 2016; 8: 1527 ; and pertinent references cited therein
- 3a Smith MB. March’s Advanced Organic Chemistry, 7th ed. Wiley; New York: 2013
- 3b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley; New York: 2018
- 4 For a review on the Friedel–Crafts reaction, see: Sartori G, Maggi R. Chem. Rev. 2006; 106: 1077
- 5a Jorgenson MJ. Org. React. 1970; 18: 1
- 5b Sibi MP. Org. Prep. Proced. Int. 1993; 25: 15
- 5c Dieter RK. Tetrahedron 1999; 55: 4177
- 5d O’Neill BT. In Comprehensive Organic Synthesis, Vol. 1. Trost B, Fleming I. Pergamon; Oxford: 1991: 397-458
- 5e Pace V, Holzer W, Olofsson B. Adv. Synth. Catal. 2014; 356: 3697
- 6a Katritzky AR, Le KN. B, Khelashvili L, Mohapatra PP. J. Org. Chem. 2006; 71: 9861
- 6b Demkiw K, Araki H, Elliott EL, Franklin CL, Fukuzumi Y, Hicks F, Hosoi K, Hukui T, Ishimaru Y, O’Brien E, Omori Y, Mineno M, Mizufune H, Sawada N, Sawai Y, Zhu L. J. Org. Chem. 2016; 81: 3447
- 6c Liu C, Achtenhagen M, Szostak M. Org. Lett. 2016; 18: 2375
- 6d Colas K, dos Santos AC. V. D, Mendoza A. Org. Lett. 2019; 21: 7908
- 7a Blangetti M, Rosso H, Prandi C, Deagostino A, Venturello P. Molecules 2013; 18: 1188
- 7b Zheng Y.-L, Newman SG. Chem. Commun. 2021; 57: 2591
- 8a Evans PA, Nelson JD, Stanley AL. J. Org. Chem. 1995; 60: 2298
- 8b Zhou C, Larock RC. J. Am. Chem. Soc. 2004; 126: 2302
- 8c Zhang Y, Rovis T. J. Am. Chem. Soc. 2004; 126: 15964
- 8d Behrends M, Sävmarker J, Sjöberg PJ. R, Larhed M. ACS Catal. 2011; 1: 1455
- 8e Li X, Zou G. Chem. Commun. 2015; 51: 5089
- 8f Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75 ; and pertinent references cited therein
- 9a Satoh T, Itaya T, Miura M, Nomura M. Chem. Lett. 1996; 823
- 9b Ishiyama T, Hartwig JA. J. Am. Chem. Soc. 2000; 122: 12043
- 9c Huang Y.-C, Majumdar KK, Cheng C.-H. J. Org. Chem. 2002; 67: 1682
- 9d Pucheault M, Darses S, Genet J.-P. J. Am. Chem. Soc. 2004; 126: 15356
- 9e Ko S, Kang B, Chang S. Angew. Chem. Int. Ed. 2005; 44: 455
- 9f Crawford JJ, Henderson KW, Kerr WJ. Org. Lett. 2006; 8: 5073
- 9g Ruan J, Saidi O, Iggo JA, Xiao J. J. Am. Chem. Soc. 2008; 130: 10510
- 9h Toh QY, McNally A, Vera S, Erdmann N, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
- 9i Nowrouzi N, Motevalli S, Tarokh D. J. Mol. Catal. A: Chem. 2015; 396: 224
- 9j Tripathi S, Singh SN, Yadav LD. S. Tetrahedron Lett. 2015; 56: 4211
- 9k Suchand B, Satyanarayana G. J. Org. Chem. 2016; 81: 6409
- 9l Rao ML. N, Ramakrishna BS. Eur. J. Org. Chem. 2017; 5080
- 9m Vandavasi JK, Hua X, Halima HB, Newman SG. Angew. Chem. Int. Ed. 2017; 56: 15441
- 9n Wakaki T, Togo T, Yoshidome D, Kuninobu Y, Kanai M. ACS Catal. 2018; 8: 3123 ; and pertinent references cited therein
- 10 Umpoled Synthons: A Survey of Sources and Uses in Synthesis. Hase TA. Wiley; New York: 1987
- 11a Seebach D. Angew. Chem., Int. Ed. Engl. 1979; 18: 239
- 11b Johnson JS. Angew. Chem. Int. Ed. 2004; 43: 1326
- 11c Opatz T. Synthesis 2009; 1941
- 11d Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 12a Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
- 12b Fan P, Zhang C, Zhang L, Wang C. Org. Lett. 2020; 22: 3875
- 12c Wang L, Wang T, Cheng G.-J, Li X, Wei J.-J, Guo B, Zheng C, Chen G, Ran C, Zheng C. ACS Catal. 2020; 10: 7543
- 13 Takemiya A, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 14800
- 14 Yucel B, Walsh PJ. Adv. Synth. Catal. 2014; 356: 3659
- 15a Kosugi M, Naka H, Harada S, Sano H, Migita T. Chem. Lett. 1987; 1371
- 15b Hanzawa Y, Tabuchi N, Taguchi T. Tetrahedron Lett. 1998; 39: 6249
- 15c Schmink JR, Krska SW. J. Am. Chem. Soc. 2011; 133: 19574
- 15d Lee D, Ryu T, Park Y, Lee PH. Org. Lett. 2014; 16: 1144
- 16a Gregory RJ. H. Chem. Rev. 1999; 99: 3649
- 16b Zeng X.-P, Sun J.-C, Liu C, Ji C.-B, Peng Y.-Y. Adv. Synth. Catal. 2019; 361: 3281
- 17a Evans PA, Oliver S, Chae J. J. Am. Chem. Soc. 2012; 134: 19314
- 17b Evans PA, Oliver S. Org. Lett. 2013; 15: 5626
- 17c Turnbull BW. H, Oliver S, Evans PA. J. Am. Chem. Soc. 2015; 137: 15374
- 17d Turnbull BW. H, Chae J, Oliver S, Evans PA. Chem. Sci. 2017; 8: 4001
- 17e Majhi J, Turnbull BW. H, Ryu H, Park J, Baik M.-H, Evans PA. J. Am. Chem. Soc. 2019; 141: 11770
- 18 Karatoprak GS, Akkol EK, Genç Y, Bardakcı H, Yücel Ç, Sobarzo-Sánchez E. Molecules 2020; 25: 2560
- 19 Hu L, Jiang J.-d, Qu J, Li Y, Jin J, Li Z.-r, Boykin DW. Bioorg. Med. Chem. Lett. 2007; 17: 3613
- 20a Xu F, Li D, Han W. Green Chem. 2019; 21: 2911
- 20b Zhu D.-L, Wu Q, Young DJ, Wang H, Ren Z.-G, Li H.-X. Org. Lett. 2020; 22: 6832
- 21 Faldt A, Pedersen MJ, Krogh TP, Hviid L, Christensen JB. Synth. Met. 1998; 94: 307
- 22a Lidy W, Sundermeyer W. Chem. Ber. 1973; 106: 587
- 22b Evans DA, Truesdale LK, Carroll GL. J. Chem. Soc., Chem. Commun. 1973; 54
- 23a Gu L.-J, Jin C, Zhang H.-T. Chem. Eur. J. 2015; 21: 8741
- 23b Cai M, Zheng G, Zha L, Peng J. Eur. J. Org. Chem. 2009; 1585
- 23c Yi W.-B, Cai C. J. Fluorine Chem. 2005; 126: 1191
- 23d Rao ML. N, Venkatesh V, Banerjee D. Tetrahedron 2007; 63: 12917
- 24 Chenniappan VK, Silwal S, Rahaim RJ. ACS Catal. 2018; 8: 4539
- 25a Gooßen LJ, Rudolphi F, Oppel C, Rodríguez N. Angew. Chem. Int. Ed. 2008; 47: 3043
- 25b Schmidt LC, Rey V, Peñéñory AB. Eur. J. Org. Chem. 2006; 2210
- 26 Ai J.-J, Liu B.-B, Li J, Wang F, Huang C.-M, Rao W, Wang S.-Y. Org. Lett. 2021; 23: 4705
- 27 Babu SA, Yasuda M, Baba A. Org. Lett. 2007; 9: 405
- 28 Pan S, Wu F, Yu R, Chen W. J. Org. Chem. 2016; 81: 1558
- 29 Di Mola A, Macchia A, Tedesco C, Pierri G, Palombi L, Filosa R, Massa A. ChemistrySelect 2019; 4: 4820
- 30 Nishimoto Y, Babu SA, Yasuda M, Baba A. J. Org. Chem. 2008; 73: 9465
- 31 Yang G.-H, Liu M, Li N, Wu R, Chen X, Pan L.-L, Gao S, Huang X, Wang C, Yu C.-M. Eur. J. Org. Chem. 2015; 616
- 32 Ghosh P, Ganguly B, Perl E, Das S. Tetrahedron Lett. 2017; 58: 2751
For examples of the utility of benzophenones, see: Medicinal Chemistry:
Bioorganic Chemistry:
Fragrance and Flavor:
Materials Chemistry:
For the synthetic utility of ketones, see:
For reviews on the addition of organometallic reagents to carboxylic acid derivatives, see:
For recent representative examples of the addition of organometallics to carboxylic acid derivatives, see:
For recent reviews on metal-catalyzed cross-coupling reactions to prepare aryl ketones, see:
For representative examples of metal-catalyzed cross-coupling reactions with carboxylic acid derivatives and nitriles, see:
For examples of the intermolecular cross-coupling of aldehydes, see:
For reviews on umpolung reactivity, see:
For recent examples of photoredox cross-coupling of aldehydes, see:
For selected examples of acyl organometallic reagents for preparing aryl ketones, see:
For reviews on the preparation and synthetic applications of cyanohydrins, see:
For recent examples of allylic cross-coupling reactions with cyanohydrins, see:
For recent syntheses of naphthylphenstatin, see: