RSS-Feed abonnieren
DOI: 10.1055/a-1857-1387
Nahinfrarot-Autofluoreszenz: klinische Anwendung und diagnostische Relevanz
Near-infrared Fundus Autofluorescence: Clinical Application and Diagnostic RelevanceZusammenfassung
Die Nahinfrarot-Autofluoreszenz (NIA) ist ein nicht-invasives Verfahren zur Untersuchung des retinalen Pigmentepithels (RPE) basierend auf der Darstellung des antioxidativen Schutzfaktors Melanin in den RPE-Zellen. Die NIA verbessert die Früherkennung chorioretinaler Erkrankungen, da bei vielen dieser Erkrankungen mit der NIA Strukturveränderungen des RPE nachweisbar sind, bevor sich in anderen Untersuchungen Krankheitszeichen erkennen lassen.
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique for examination of the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within the RPE cells, in one of them it serves as a protective antioxidative factor within the RPE cells and is involved in the phagocytosis of photoreceptor outer segments. Disorders that affect the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. Therefore, NIA allows to detect early alterations in inherited and acquired chorioretinal disorders, frequently prior to ophthalmoscopical visualisation and often prior to alterations in lipofuscin associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, findings between both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders (e.g., age-related macular degeneration, retinitis pigmentosa, ABCA4-gene associated Stargardt disease and cone-rod dystrophy, light damage), indicating that NIA detects earlier alterations compared to FAF. In addition, due to the absence of blue-light filtering which limits foveal visualisation in FAF, foveal alterations can be much better detected using NIA. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant BEST1-associated disease, when FAF and OCT are still normal. In other disorders, a normal subfoveal NIA intensity is associated with good visual acuity. This review summarizes the present knowledge on NIA and demonstrates biomarkers for various chorioretinal disorders.
-
Die Nahinfrarot-Autofluoreszenz (NIA) ist eine nichtinvasive Untersuchungstechnik, welche auf den fluorophoren Eigenschaften des Melanins in den RPE-Zellen basiert und dadurch Veränderungen des Melanin-Gehalts im retinalen Pigmentepithel (RPE) darstellen kann.
-
Die NIA ist eine für den Patienten wenig belastende retinale Bildgebung und kann daher auch bei Kindern oder stark blendungsempfindlichen Personen gut durchgeführt werden.
-
Die NIA ermöglicht es, Veränderungen im RPE bei allen Erkrankungen mit Beteiligung des Photorezeptor-RPE-Komplexes darzustellen.
-
Eine normale NIA ist gekennzeichnet durch eine subfoveal hohe Intensität, die zum Rand der Makula abnimmt und dann nach peripher gleichmäßig bleibt.
-
Die NIA kann, wegen der fehlenden Blockade durch makuläres Pigment, Läsionen in der Fovea besser darstellen als die FAF.
-
Sowohl bei erworbenen als auch hereditären chorioretinalen Erkrankungen zeigen sich korrespondierend zu Veränderungen der NIA meistens auch Veränderungen in der FAF und der OCT. Die Veränderungen in diesen drei Techniken basieren auf unterschiedlichen pathophysiologischen Mechanismen. Sie zeigen daher unterschiedliche und teils deutlich divergente Phänomene.
-
Eine normale subfoveale NIA-Intensität korreliert in der Regel mit einem guten Visus.
-
Eine reduzierte NIA-Intensität ist bei vielen Erkrankungen das früheste oder eines der frühesten Krankheitszeichen. Insofern ist die betroffene Region in der NIA in der Regel größer als in der FAF und auch der OCT.
-
Beim Morbus Best ist eine zentral reduzierte NIA-Intensität das früheste und möglicherweise lebenslang einzige Zeichen einer Manifestation.
Schlüsselwörter
nichtinvasive retinale Bildgebung - Nahinfrarot-Autofluoreszenz - retinales Pigmentepithel - Photorezeptoren - retinale ErkrankungenKey words
non-invasive retinal imaging - near-infrared fundus autofluorescence - retinal pigment epithelium - photoreceptors - retinal disordersPublikationsverlauf
Artikel online veröffentlicht:
24. Mai 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Bindewald-Wittich A, Kellner U. Fundusautofluoreszenz: Klinische Anwendung und diagnostische Bedeutung. Klin Monbl Augenheilkd 2020;
- 2 Lapierre-Landry M, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng 2018; 12: 29
- 3 Fang Y, Tschulakow A, Taubitz T. et al. Fundus autofluorescence, spectral-domain optical coherence tomography, and histology correlations in a Stargardt disease mouse model. FASEB J 2020; 34: 3693-3714
- 4 Piccolino FC, Borgia L, Zinicola E. et al. Pre-injection fluorescence in indocyanine green angiography. Ophthalmology 1996; 103: 1837-1845
- 5 Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 2006; 47: 3556-3564
- 6 Chen FK, Khoo YJ, Tang I. Near-infrared autofluorescence imaging in geographic atrophy using spectralis single and combined wavelength modes. Asia Pac J Ophthalmol (Phila) 2015; 4: 334-338
- 7 Battaglia Parodi M, Iacono P, Papayannis A. et al. Near-infrared fundus autofluorescence in early age-related macular degeneration. Eur J Ophthalmol 2020; 30: 1448-1453
- 8 Paavo M, Lee W, Merriam J. et al. Intraretinal correlates of reticular pseudodrusen revealed by autofluorescence and en face OCT. Invest Ophthalmol Vis Sci 2017; 58: 4769-4777
- 9 Heiferman MJ, Fawzi AA. Discordance between blue-light autofluorescence and near-infrared autofluorescence in age-related macular degeneration. Retina 2016; 36 Suppl 1: S137-S146
- 10 Bonilha VL, Bell BA, Hu J. et al. Geographic atrophy: confocal scanning laser ophthalmoscopy, histology, and inflammation in the region of expanding lesions. Invest Ophthalmol Vis Sci 2020; 61: 15
- 11 Pilotto E, Benetti E, Convento E. et al. Microperimetry, fundus autofluorescence, and retinal layer changes in progressing geographic atrophy. Can J Ophthalmol 2013; 48: 386-393
- 12 Han L, de Carvalho jr. JRL, Parmann R. et al. Central serous chorioretinopathy analyzed by multimodal imaging. Transl Vis Sci Technol 2021; 10: 15
- 13 Soga H, Asaoka R, Kadonosono K. et al. Association of near-infrared and short-wavelength autofluorescence with the retinal sensitivity in eyes with resolved central serous chorioretinopathy. Invest Ophthalmol Vis Sci 2021; 62: 36
- 14 Sparrow JR, Parmann R, Tsang SH. et al. Shared features in retinal disorders with involvement of retinal pigment epithelium. Invest Ophthalmol Vis Sci 2021; 62: 15
- 15 Cicinelli MV, Rabiolo A, Brambati M. et al. Factors influencing retinal pigment epithelium-atrophy progression rate in Stargardt disease. Transl Vis Sci Technol 2020; 9: 33
- 16 Paavo M, Lee W, Allikmets R. et al. Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease. J Neurosci Res 2019; 97: 98-106
- 17 Jauregui R, Nuzbrokh Y, Su PY. et al. Retinal pigment epithelium atrophy in recessive stargardt disease as measured by short-wavelength and near-infrared autofluorescence. Transl Vis Sci Technol 2021; 10: 3
- 18 Parodi MB, Iacono P, Triolo G. et al. Morpho-functional correlation of fundus autofluorescence in Stargardt disease. Br J Ophthalmol 2015; 99: 1354-1359
- 19 Lima de Carvalho jr. JR, Paavo M, Chen L. et al. Multimodal imaging in best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 2019; 60: 2012-2022
- 20 Parodi MB, Arrigo A, Calamuneri A. et al. Multimodal imaging in subclinical best vitelliform macular dystrophy. Br J Ophthalmol 2020;
- 21 Parodi MB, Cicinelli MV, Iacono P. et al. Multimodal imaging of foveal cavitation in retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 2017; 255: 271-279
- 22 Duncker T, Tabacaru MR, Lee W. et al. Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54: 585-591
- 23 Nassisi M, Lavia C, Mohand-Said S. et al. Near-infrared fundus autofluorescence alterations correlate with swept-source optical coherence tomography angiography findings in patients with retinitis pigmentosa. Sci Rep 2021; 11: 3180
- 24 Birtel J, Salvetti AP, Jolly JK. et al. Near-infrared autofluorescence in choroideremia: anatomic and functional correlations. Am J Ophthalmol 2019; 199: 19-27
- 25 Paavo M, Carvalho jr. JRL, Lee W. et al. Patterns and intensities of near-infrared and short-wavelength fundus autofluorescence in choroideremia probands and carriers. Invest Ophthalmol Vis Sci 2019; 60: 3752-3761
- 26 Miura M, Makita S, Azuma S. et al. Evaluation of retinal pigment epithelium layer change in vogt-koyanagi-harada disease with multicontrast optical coherence tomography. Invest Ophthalmol Vis Sci 2019; 60: 3352-3362
- 27 Zicarelli F, Mantovani A, Preziosa C. et al. multimodal imaging of multiple evanescent white dot syndrome: a new interpretation. Ocul Immunol Inflamm 2020; 28: 814-820
- 28 Hwang CK, Sen HN. Concurrent vascular flow defects at the deep capillary plexus and choriocapillaris layers in acute macular neuroretinopathy on multimodal imaging: A case series. Am J Ophthalmol Case Rep 2020; 20: 100866
- 29 Shah D, Khedia D, Saurabh K. et al. Multimodal imaging signatures in a case of acute zonal occult outer retinopathy. Indian J Ophthalmol 2018; 66: 1349-1352
- 30 Greenstein VC, Lima de Carvalho jr. JR, Parmann R. et al. Quantitative fundus autofluorescence in hcq retinopathy. Invest Ophthalmol Vis Sci 2020; 61: 41
- 31 Jauregui R, Parmann R, Nuzbrokh Y. et al. Spectral-domain optical coherence tomography is more sensitive for hydroxychloroquine-related structural abnormalities than short-wavelength and near-infrared autofluorescence. Transl Vis Sci Technol 2020; 9: 8
- 32 Kellner S, Weinitz S, Kellner U. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br J Ophthalmol 2009; 93: 1444-1447
- 33 Birtel J, Hildebrand GD, Charbel Issa P. Laser pointer: a possible risk for the retina. Klin Monbl Augenheilkd 2020; 237: 1187-1193
- 34 Vallabh NA, Sahni JN, Parkes CK. et al. Near-infrared reflectance and autofluorescence imaging characteristics of choroidal nevi. Eye (Lond) 2016; 30: 1593-1597
- 35 Golshahi A, Bornfeld N, Weinitz S. et al. Near-infrared autofluorescence in bilateral diffuse uveal melanocytic proliferation associated with esophageal carcinoma and choroidal metastasis. Retin Cases Brief Rep 2016; 10: 254-258
- 36 Vienola KV, Zhang M, Snyder VC. et al. Microstructure of the retinal pigment epithelium near-infrared autofluorescence in healthy young eyes and in patients with AMD. Sci Rep 2020; 10: 9561
- 37 Miura M, Makita S, Yasuno Y. et al. Evaluation of retinal pigment epithelium changes in serous pigment epithelial detachment in age-related macular degeneration. Sci Rep 2021; 11: 2764