Anästhesiol Intensivmed Notfallmed Schmerzther 2023; 58(03): 132-144
DOI: 10.1055/a-1861-0043
CME-Fortbildung
Topthema

Kardioanästhesie – Was gibt es Neues?

Cardioanaesthesiology – What's new?
Matthias Heringlake
,
Astrid Ellen Berggreen
,
Simon Schemke

Die unverändert hohe Morbidität und Mortalität von Patienten, die sich komplexen herzchirurgischen Eingriffen unterziehen, stellen hohe Anforderungen an die Kardioanästhesie. Dieser Beitrag gibt einen Überblick über aktuelle Entwicklungen zu den Themen inotrope Therapie, Monitoring, rationaler Einsatz mechanischer Kreislaufunterstützungssysteme, Volumenmanagement, Sedierung, postoperative Schmerztherapie und Point-of-Care-Gerinnungsdiagnostik.

Abstrac

The still unchanged high morbidity and mortality of patients undergoing complex cardiac surgical procedures as well as developments in minimally invasive cardiac surgery are not only an ongoing challenge for all working in cardiac anaesthesia but also a chance for further developing this anaesthetic subdiscipline. Alongside the presentation of a case report, the present article gives an overview about recent developments in inotropic therapy, monitoring, the rational use of mechanical circulatory support, volume therapy, sedation, analgesia, and point-of-care coagulation monitoring in cardiac anaesthesia.

Kernaussagen
  • Die unverändert inakzeptabel hohe Sterblichkeit nach komplexen herzchirurgischen Eingriffen erfordert eine adäquate Risikostratifizierung und multimodale Therapiekonzepte, um die kardiale Funktion zu verbessern.

  • Eine präemptive, mehrere Stunden präoperativ begonnene Levosimendan-Therapie scheint geeignet, die Morbidität und Mortalität herzchirurgischer Patienten zu reduzieren. Dies gilt insbesondere für Patienten mit reduzierter linksventrikulärer Funktion, die sich einer koronaren Bypassoperation unterziehen.

  • Die aktuelle S3-Leitlinie zur hämodynamischen Therapie herzchirurgischer Patienten empfiehlt einen PAK bei Hochrisikopatienten sowie bei Rechtsherzdysfunktion, pulmonalarterieller Hypertonie und zur Differenzierung der Ursachen und Steuerung der Therapie eines Low-cardiac-Output-Syndroms. Diese Empfehlung erscheint vor dem Hintergrund aktueller Registerdaten unverändert gerechtfertigt.

  • Aktuelle systematische Reviews legen nahe: Eine Überwachung der ScO2 mittels NIRS verbunden mit einer zielgerichteten Therapie zur Vermeidung zerebraler Desaturierung könnte geeignet sein, einen postoperativen geistigen Abbau und/oder die Inzidenz eines postoperativen Delirs zu reduzieren.

  • Die Implantation einer IABP sollte präoperativ bei kardiochirurgischen Hochrisikopatienten und bei Patienten mit aktiver oder dekompensierter Herzinsuffizienz erwogen werden; ebenso, wenn ein postoperativer Bedarf für eine mechanische Kreislaufunterstützung erwartet wird. Die IABP soll zur Induktion von Pulsatilität während des kardiopulmonalen Bypasses genutzt werden.

  • Pathophysiologische Überlegungen und zunehmende Hinweise auf die Toxizität synthetischer Kolloide legen nahe, zum kolloidalen Volumenersatz präferenziell Albumin einzusetzen und perioperativ eine Hypalbuminämie zu vermeiden.



Publikationsverlauf

Artikel online veröffentlicht:
23. März 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Beckmann A, Meyer R, Lewandowski J. et al. German Heart Surgery Report 2020: The Annual Updated Registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 2021; 69: 294-307 DOI: 10.1055/s-0041-1730374. (PMID: 34176107)
  • 2 Habicher M, Zajonz T, Bauer A. et al. S3-Leitlinie zur intensivmedizinischen Versorgung herzchirurgischer Patienten – Hämodynamisches Monitoring und Herz-Kreislauf. Anästh Intensivmed 2018; 59: S607-S634
  • 3 Papp Z, Agostoni P, Alvarez J. et al. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use. J Cardiovasc Pharmacol 2020; 76: 4-22 DOI: 10.1097/FJC.0000000000000859. (PMID: 32639325)
  • 4 Caruba T, Charles-Nelson A, Alexander JH. et al. Prophylactic levosimendan in patients with low ejection fraction undergoing coronary artery bypass grafting: A pooled analysis of two multicentre randomised controlled trials. Anaesth Crit Care Pain Med 2022; 41: 101107
  • 5 Garan AR, Kanwar M, Thayer KL. et al. Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality. JACC Heart Fail 2020; 8: 903-913
  • 6 Bootsma IT, de Lange F, Koopmans M. et al. Right ventricular function after cardiac surgery is a strong independent predictor for long-term mortality. J Cardiothorac Vasc Anesth 2017; 31: 1656-1662 DOI: 10.1053/j.jvca.2017.02.008. (PMID: 28416392)
  • 7 Serraino GF, Murphy GJ. Effects of cerebral near-infrared spectroscopy on the outcome of patients undergoing cardiac surgery: a systematic review of randomised trials. BMJ Open 2017; 7: e016613 DOI: 10.1136/bmjopen-2017-016613. (PMID: 28882917)
  • 8 Zorrilla-Vaca A, Healy R, Grant MC. et al. Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials. Can J Anaesth 2018; 65: 529-542 DOI: 10.1007/s12630-018-1065-7. (PMID: 29427259)
  • 9 Tian LJ, Yuan S, Zhou CH. et al. The effect of intraoperative cerebral oximetry monitoring on postoperative cognitive dysfunction and ICU stay in adult patients undergoing cardiac surgery: An updated systematic review and meta-analysis. Front Cardiovasc Med 2022; 8: 814313 DOI: 10.3389/fcvm.2021.814313. (PMID: 35178431)
  • 10 Schmidt C, Heringlake M, Kellner P. et al. The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters. Can J Anaesth 2018; 65: 766-775 DOI: 10.1007/s12630-018-1093-3. (PMID: 29484605)
  • 11 Hogue CW, Levine A, Hudson A. et al. Clinical applications of near-infrared spectroscopy monitoring in cardiovascular surgery. Anesthesiology 2021; 134: 784-791 DOI: 10.1097/ALN.0000000000003700. (PMID: 33529323)
  • 12 Brady K, Joshi B, Zweifel C. et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 2010; 41: 1951-1956 DOI: 10.1161/STROKEAHA.109.575159. (PMID: 20651274)
  • 13 Hogue CW, Brown 4th CH, Hori D. et al. Personalized blood pressure management during cardiac surgery with cerebral autoregulation monitoring: a randomized trial. Semin Thorac Cardiovasc Surg 2021; 33: 429-438
  • 14 Thiele H, Zeymer U, Neumann FJ. et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012; 367: 1287-1296
  • 15 Werdan K, Buerke M, Geppert A. et al. Infarction-related cardiogenic shock – diagnosis, monitoring and therapy–A German-Austrian S3 Guideline. Dtsch Arztebl Int 2021; 118: 88-95 DOI: 10.3238/arztebl.m2021.0012. (PMID: 33827749)
  • 16 Grieshaber P, Heringlake M, Bauer A. et al. The use of intraaortic balloon counterpulsation in cardiac surgery in Germany. Abstract. Jahrestagung der Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG). 2022
  • 17 Pilarczyk K, Bauer A, Boening A. et al. S3-Leitlinie Einsatz der intraaortalen Ballongegenpulsation in der Herzchirurgie. Thorac Cardiovasc Surg 2015; 63: S131-S196
  • 18 Dhruva SS, Ross JS, Mortazavi BJ. et al. Association of use of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 2020; 323: 734-745
  • 19 Wang L, Wang H, Hou X. Clinical outcomes of adult patients who receive extracorporeal membrane oxygenation for postcardiotomy cardiogenic shock: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 2018; 32: 2087-2093 DOI: 10.1053/j.jvca.2018.03.016. (PMID: 29678433)
  • 20 Bakaeen FG, Gaudino M, Whitman G. et al. 2021: The American Association for Thoracic Surgery Expert Consensus Document: Coronary artery bypass grafting in patients with ischemic cardiomyopathy and heart failure. J Thorac Cardiovasc Surg 2021; 162: 829-850
  • 21 Wiedermann CJ, Wiedermann W, Joannidis M. Causal relationship between hypoalbuminemia and acute kidney injury. World J Nephrol 2017; 6: 176-187 DOI: 10.5527/wjn.v6.i4.176. (PMID: 28729966)
  • 22 Sedrakyan A, Gondek K, Paltiel D. et al. Volume expansion with albumin decreases mortality after coronary artery bypass graft surgery. Chest 2003; 123: 1853-1857
  • 23 Kingeter AJ, Raghunathan K, Munson SH. et al. Association between albumin administration and survival in cardiac surgery: a retrospective cohort study. Can J Anaesth 2018; 65: 1218-1227
  • 24 Pesonen E, Vlasov H, Suojaranta R. et al. Effect of 4% albumin solution vs ringer acetate on major adverse events in patients undergoing cardiac surgery with cardiopulmonary bypass: a randomized clinical trial. JAMA 2022; 328: 251-258
  • 25 Wigmore GJ, Anstey JR, St John A. et al. 20% human albumin solution fluid bolus administration therapy in patients after cardiac surgery (the HAS FLAIR Study). J Cardiothorac Vasc Anesth 2019; 33: 2920-2927
  • 26 Vincent JL, Navickis RJ, Wilkes MM. Morbidity in hospitalized patients receiving human albumin: a meta-analysis of randomized, controlled trials. Crit Care Med 2004; 32: 2029-2038 DOI: 10.1097/01.ccm.0000142574.00425.e9. (PMID: 15483411)
  • 27 Skhirtladze K, Base EM, Lassnigg A. et al. Comparison of the effect of albumin 5%, hydroxyethyl starch 130/0.4 6%, and Ringer’s lactate on blood loss and coagulation after surgery. Br J Anaesth 2014; 112: 255-264
  • 28 Navickis RJ, Haynes GR, Wilkes MM. Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: A meta-analysis of randomized trials. J Thorac Cardiovasc Surg 2012; 144: 223-230 DOI: 10.1016/j.jtcvs.2012.04.009. (PMID: 22578894)
  • 29 Tibi P, McClure RS, Huang J. et al. STS/SCA/AmSECT/SABM Update to the Clinical Practice Guidelines on Patient Blood Management. J Extra Corpor Technol 2021; 53: 97-124 DOI: 10.1016/j.athoracsur.2021.03.033. (PMID: 34217505)
  • 30 Shehabi Y, Howe BD, Bellomo R. et al. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med 2019; 380: 2506-2517
  • 31 Shehabi Y, Serpa Neto A, Howe BD. et al. Early sedation with dexmedetomidine in ventilated critically ill patients and heterogeneity of treatment effect in the SPICE III randomised controlled trial. Intensive Care Med 2021; 47: 455-466
  • 32 Ebert TJ, Hall JE, Barney JA. et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000; 93: 382-394 DOI: 10.1097/00000542-200008000-00016. (PMID: 10910487)
  • 33 Cioccari L, Luethi N, Bailey M. et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit Care 2020; 24: 441
  • 34 Devarajan J, Balasubramanian S, Nazarnia S. et al. Regional Analgesia for Cardiac Surgery Part 1. Current status of neuraxial and paravertebral blocks for adult cardiac surgery. Semin Cardiothorac Vasc Anesth 2021; 25: 252-264 DOI: 10.1177/10892532211023337. (PMID: 34162252)
  • 35 Devarajan J, Balasubramanian S, Shariat AN. et al. Regional Analgesia for Cardiac Surgery Part 2: Peripheral Regional Analgesia for Cardiac Surgery. Semin Cardiothorac Vasc Anesth 2021; 25: 265-279 DOI: 10.1177/10892532211002382. (PMID: 33827348)
  • 36 Subramaniam B, Shankar P, Shaefi S. et al. Effect of intravenous acetaminophen vs placebo combined with propofol or dexmedetomidine on postoperative delirium among older patients following cardiac surgery: The DEXACET randomized clinical trial. JAMA 2019; 32: 686-696 DOI: 10.1001/jama.2019.0234. (PMID: 30778597)
  • 37 Kubitz JC, Schubert AM, Schulte-Uentrop L. Enhanced Recovery After Surgery (ERAS®) in der Kardioanästhesie. Anaesthesiologie 2022; 71: 663-673 DOI: 10.1007/s00101-022-01190-z. (PMID: 35987897)
  • 38 Volod O, Bunch CM, Zackariya N. et al. Viscoelastic hemostatic assays: A primer on legacy and new generation devices. J Clin Med 2022; 11: 860 DOI: 10.3390/jcm11030860. (PMID: 35160311)
  • 39 Meco M, Montisci A, Giustiniano E. et al. Viscoelastic blood tests use in adult cardiac surgery: meta-analysis, meta-regression, and trial sequential analysis. J Cardiothorac Vasc Anesth 2020; 34: 119-127 DOI: 10.1053/j.jvca.2019.06.030. (PMID: 31445833)
  • 40 Tibi P, McClure RS, Huang J. et al. STS/SCA/AmSECT/SABM Update to the Clinical Practice Guidelines on Patient Blood Management. J Cardiothorac Vasc Anesthesian 2021; 35: 2569-2591 DOI: 10.1016/j.athoracsur.2021.03.033. (PMID: 34217505)
  • 41 Woźniak MJ, Abbasciano R, Monaghan A. et al. Systematic review and meta-analysis of diagnostic test accuracy studies evaluating point-of-care tests of coagulopathy in cardiac surgery. Transfus Med Rev 2021; 35: 7-15 DOI: 10.1016/j.tmrv.2020.09.012. (PMID: 33187808)
  • 42 Lehmann F, Rau J, Malcolm B. et al. Why does a point of care guided transfusion algorithm not improve blood loss and transfusion practice in patients undergoing high-risk cardiac surgery? A prospective randomized controlled pilot study. BMC Anaesthesiol 2019; 19: 24
  • 43 Bunch CM, Berquist M, Ansari A. et al. The choice between plasma-based common coagulation tests and cell-based viscoelastic tests in monitoring hemostatic competence: Not an either-or proposition. Semin Thromb Hemost 2022; 48: 769-784