Synlett 2022; 33(15): 1563-1569
DOI: 10.1055/a-1865-1792
letter

Amidation of α-Amino Acids Using Dichloro(methyl)(3,3,3-trifluoropropyl)silane and Imidazole without Conventional Protection and Deprotection of α-Amino Group

Tomoya Nobuta
,
Honoka Morishita
,
Yutaka Suto
,
Noriyuki Yamagiwa


Abstract

Amidation of amino acids using dichloro(methyl)(3,3,3-trifluoropropyl)silane (MTFPSCl2) and imidazole is described. MTFPSCl2 activates the carboxy group and protects the α-amino group of amino acids. The amidation proceeded with 19 amino acids and 19 amines, including α-branched amines and anilines; the corresponding amino acid amides were synthesized in good-to-high yields (up to 96%) with low-to-no racemization.

Supporting Information



Publication History

Received: 28 April 2022

Accepted after revision: 31 May 2022

Accepted Manuscript online:
31 May 2022

Article published online:
22 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Greenacre JK, Coxon A, Petrie A, Reid JL. Lancet 1976; 308: 381
  • 2 Patchett AA, Harris E, Tristram EW, Wyvratt MJ, Wu MT, Taub D, Peterson ER, Ikeler TJ, Ten Broeke J. Nature 1980; 288: 280
  • 3 Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, Robertson JG, Wang A, Simpkins LM, Taunk P, Huang Q, Han SP, Abboa-Offei B, Cap M, Xin L, Tao L, Tozzo E, Welzel GE, Egan DM, Marcinkeviciene J, Chang SY, Biller SA, Kirby MS, Parker RA, Hamann LG. J. Med. Chem. 2005; 48: 5025

    • For reviews, see:
    • 4a Han S.-Y, Kim Y.-A. Tetrahedron 2004; 60: 2447
    • 4b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 4c El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 4d Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 5a Sheehan JC, Hess GP. J. Am. Chem. Soc. 1955; 77: 1067
    • 5b Sheehan J, Cruickshank P, Boshart G. J. Org. Chem. 1961; 26: 2525
    • 5c König W, Geiger R. Chem. Ber. 1970; 103: 788
    • 5d Carpino LA. J. Am. Chem. Soc. 1993; 115: 4397
    • 6a Castro B, Dormoy J.-R, Evin G, Selve C. Tetrahedron Lett. 1975; 16: 1219
    • 6b Coste J, Le-Nguyen D, Castro B. Tetrahedron Lett. 1990; 31: 205
    • 6c Coste J, Frérot EP. Jouin P, Castro B. Tetrahedron Lett. 1991; 32: 1967
    • 7a Dourtoglou V, Ziegler J.-C, Gross B. Tetrahedron Lett. 1978; 19: 1269
    • 7b Knorr R, Trzeciak A, Bannwarth W, Gillessen D. Tetrahedron Lett. 1989; 30: 1927
    • 8a Kunishima M, Kawachi C, Iwasaki F, Terao K. Tetrahedron Lett. 1999; 40: 5327
    • 8b Kunishima M, Kawachi C, Hioki K, Terao K, Tani S. Tetrahedron 2001; 57: 1551

      For reviews, see:
    • 9a Agami C, Couty F. Tetrahedron 2002; 58: 2701
    • 9b Isidro-Llobet A, Alvarez M, Albericio F. Chem. Rev. 2009; 109: 2455
    • 9c Omprakash RathiJ, Subray ShankarlingG. ChemistrySelect 2020; 5: 6861

      For reviews of protecting group free syntheses, see:
    • 10a Hoffmann RW. Synthesis 2006; 3531
    • 10b Gademann K, Bonazzi S. Angew. Chem. Int. Ed. 2007; 46: 5656
    • 10c Young IS, Baran PS. Nat. Chem. 2009; 1: 193
    • 10d Saicic RN. Tetrahedron 2014; 70: 8183
  • 11 Sharma RK, Jain R. Synlett 2007; 603
  • 12 Muramatsu W, Yamamoto H. J. Am. Chem. Soc. 2021; 143: 6792
  • 13 Fuchs F. Ber. Dtsch. Chem. Ges. 1922; 55: 2943
  • 14 Leuchs H. Ber. Dtsch. Chem. Ges. 1906; 39: 857
    • 15a Oya M, Katakai R, Nakai H, Iwakura Y. Chem. Lett. 1973; 2: 1143
    • 15b Katakai R, Iizuka Y. J. Org. Chem. 1985; 50: 715
    • 15c Daly WH, Poche DS. Tetrahedron Lett. 1988; 29: 5859
    • 15d Wilder R, Mobashery S. J. Org. Chem. 1992; 57: 2755
    • 16a Nagai A, Sato D, Ishikawa J, Ochiai B, Kudo H, Endo T. Macromolecules 2004; 37: 2332
    • 16b Fujita Y, Koga K, Kim HK, Wang XS, Sudo A, Nishida H, Endo T. J. Polym. Sci., Part A: Polym. Chem. 2007; 45: 5365
    • 16c Koga K, Sudo A, Nishida H, Endo T. J. Polym. Sci., Part A: Polym. Chem. 2009; 47: 3839
    • 16d Koga K, Sudo A, Endo T. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 4351
  • 17 Otake Y, Nakamura H, Fuse S. Angew. Chem. Int. Ed. 2018; 57: 11389
    • 18a Burger K, Rudolph M. Chem.-Ztg. 1990; 114: 249
    • 18b Buger K, Gold M, Nerhauser H, Rudolph M. Chem.-Ztg. 1991; 115: 77
    • 18c Burger K, Lange T, Rudolph M. Heterocycles 2003; 59: 189
  • 19 For a review, see: Spengler J, Bottcher C, Albericio F, Burger K. Chem. Rev. 2006; 106: 4728
    • 20a van Leeuwen SH, Quaedflieg PJ. L. M, Broxterman QB, Milhajlovic Y, Liskamp RM. J. Tetrahedron Lett. 2005; 46: 653
    • 20b Lanigan RM, Karaluka V, Sabatini MT, Starkov P, Badland M, Boulton LT, Sheppard TD. Chem. Commun. 2016; 52: 8846
    • 20c Sabatini MT, Karaluka V, Lanigan RM, Boulton LT, Badland M, Sheppard TD. Chem. Eur. J. 2018; 24: 7033
  • 21 van Leeuwen SH, Quaedflieg PJ. L. M, Broxterman QB, Liskamp RM. J. Tetrahedron Lett. 2002; 43: 9203
    • 22a Silyl compounds have been used for condensation reagents for amide bond formation. For reviews, see: Davies JJ, Braddock DC, Lickiss PD. Org. Biomol. Chem. 2021; 19: 6746

    • For selected examples, see:
    • 22b Chan TH, Wong LT. L. J. Org. Chem. 1969; 34: 2766
    • 22c Tozawa T, Yamane Y, Mukaiyama T. Chem. Lett. 2005; 34: 734
    • 22d Tozawa T, Yamane Y, Mukaiyama T. Chem. Lett. 2005; 34: 1334
    • 22e Tozawa T, Yamane Y, Mukaiyama T. Chem. Lett. 2005; 34: 1586
    • 22f Ruan Z, Lawrence RM, Cooper CB. Tetrahedron Lett. 2006; 47: 7649
    • 22g Aspin SJ, Taillemaud S, Cyr P, Charette AB. Angew. Chem. Int. Ed. 2016; 55: 13833
    • 22h Sayes M, Charette AB. Green Chem. 2017; 19: 5060
    • 22i Braddock DC, Lickiss PD, Rowley BC, Pugh D, Purnomo T, Santhakumar G, Fussell SJ. Org. Lett. 2018; 20: 950
    • 22j Morisset E, Chardon A, Rouden J, Blanchet J. Eur. J. Org. Chem. 2020; 388
    • 22k Muramatsu W, Manthena C, Nakashima E, Yamamoto H. ACS Catal. 2020; 10: 9594
    • 22l D’Amaral M, Jamkhou N, Adler MJ. Green Chem. 2021; 23: 288
    • 23a Schmidt MA, Reiff EA, Qian X, Hang C, Truc VC, Natalie KJ, Wang C, Albrecht J, Lee AG, Lo ET, Guo Z, Goswami A, Goldberg S, Pesti J, Rossano LT. Org. Process Res. Dev. 2015; 19: 1317
    • 23b Balaev AN, Osipov VN, Okhmanovich KA, Fedorov VE. Pharm. Chem. J. 2015; 49: 334
  • 24 During preparation of this manuscript, Hattori and Yamamoto reported a silyl reagent-mediated peptide synthesis using unprotected amino acids. See: Hattori T, Yamamoto H. J. Am. Chem. Soc. 2022; 144: 1758
  • 25 Experimental Procedure l-Phenylalanine (1a, 33.0 mg, 0.2 mmol) and imidazole (68.1 mg, 1 mmol) were suspended in dry CH3CN (1 mL), and dichloro(methyl)(3,3,3-trifluoropropyl)silane (3b, 82.4 µL, 0.5 mmol) and sec-butylamine (2b, 140.3 µL, 1.4 mmol) were added at 0 °C. The reaction mixture was stirred for 18 h at 40 °C and then quenched with aqueous solution of NaHCO3/KF. The reaction mixture was extracted with ethyl acetate (2×), and the combined organic layer was dried over Na2SO4, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (DCM/MeOH/triethylamine = 90:10:0.1) provided (2S)-2-amino-N-(sec-butyl)-3-phenylpropanamide 4ab (32.5 mg, 74%).
  • 26 Characterization Data of (2S)-2-amino-N-(sec-butyl)-3-phenylpropanamide (4ab) Colorless oil. [α]D 24 29.9 (c 2.10, MeOH). 1H NMR (500 MHz, CDCl3): δ = 7.33–7.22 (m, 5 H), 7.03 (br s, 1 H), 3.92–3.87 (m, 1 H), 3.60–3.56 (m, 1 H), 3.28–3.24 (m, 1 H), 2.71 (dd, J = 12.9, 9.3 Hz, 1 H), 1.49–1.37 (m, 4 H), 1.11–1.09 (m, 3 H), 0.90–0.86 (m, 3 H). 13C NMR (125 MHz, CDCl3): δ = 173.5, 138.1, 129.4, (128.8, 128.7), 126.8, (56.6, 56.5), (46.2, 46.1), (41.3, 41.2), (29.7, 29.7), 20.5, (10.4, 10.4). HRMS (ESI): m/z calcd for C13H21N2O [M + H]+: 221.1648; found: 221.1644.
    • 27a Hyun MH, Min HJ, Cho YJ. Bull. Korean Chem. Soc. 2003; 24: 911
    • 27b Liu Z, Lu W, Qian L, Zhang X, Zeng P, Pan J. J. Controlled Release 2005; 102: 135
    • 27c Zhang Y, Feng J, Liu C, Fang H, Xu W. Bioorg Med Chem. 2011; 19: 4437
    • 27d Yang WY, Breiner B, Kovalenko SV, Ben C, Singh M, LeGrand SN, Sang QX. A, Strouse GF, Copland JA, Alabugin IV. J. Am. Chem. Soc. 2009; 131: 11458
    • 27e Heinrich S, Altenkamper M, Bechem B, Perruchon J, Ortmann R, Dahse HM, Wang Y, Lanzer M, Schlitzer M. Eur. J. Med. Chem. 2011; 46: 1331
    • 28a Chen F, Huang S, Zhang H, Liu F, Peng Y. Tetrahedron 2008; 64: 9585
    • 28b Matsuzawa A, Nojiri A, Kumagai N, Shibasaki M. Chem. Eur. J. 2010; 16: 5036
    • 28c Tanimura Y, Yasunaga K, Ishimaru K. Eur. J. Org. Chem. 2013; 6535
    • 28d Kimura J, Subba Reddy UV, Kohari Y, Seki C, Mawatari Y, Uwai K, Okuyama Y, Kwon E, Tokiwa M, Takeshita M, Iwasa T, Nakano H. Eur. J. Org. Chem. 2016; 3748
    • 28e Owolabi IA, Chennapuram M, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H. Bull. Chem. Soc. J. 2019; 92: 696

      Copper-catalyzed syntheses of amino acid anilides from unprotected amino acid amides with iodobenzenes have been reported:
    • 29a Dong J, Wang Y, Xiang Q, Lv X, Weng W, Zeng Q. Adv. Synth. Catal. 2013; 355: 692
    • 29b Min X, Li X, Wang Y, Dong Y, Tang J, Wang J, Liu J. Tetrahedron 2018; 74: 2561