Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(22): 4997-5002
DOI: 10.1055/a-1867-0674
DOI: 10.1055/a-1867-0674
special topic
Aryne Chemistry in Synthesis
Multidimensional Isotropic Magnetic Shielding Contour Maps for the Visualization of Aromaticity in ortho-Arynes and Their Reactions
This work was funded by the French Agence Nationale de la Recherche (ANR) (ANR-19-CE07-0041). Institutional financial support from Aix-Marseille University, Centrale Marseille and the Centre National de la Recherche Scientifique (CNRS) is acknowledged.
Abstract
Visualization of electron delocalization and aromaticity in some selected arynes, including nonplanar examples, and their Diels–Alder or dimerization reactions was achieved through multidimensional isotropic magnetic shielding contour maps. These maps showed that arynes are generally less aromatic than the corresponding arenes, and that aromaticity peaks during their reactions when approaching the transition state.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1867-0674.
- Supporting Information
- CIF File
Publication History
Received: 31 March 2022
Accepted after revision: 01 June 2022
Accepted Manuscript online:
01 June 2022
Article published online:
05 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
- 2a Pozo I, Guitián E, Pérez D, Peña D. Acc. Chem. Res. 2019; 52: 2472 ; and references cited therein
- 2b Sarmah M, Sharma A, Gogoi P. Org. Biomol. Chem. 2021; 19: 722
- 4a Jiao H, Schleyer P. vonR, Beno BR, Houk KN, Warmuth R. Angew. Chem. Int. Ed. Engl. 1997; 36: 2761
- 4b De Proft F, Schleyer P. vonR, van Lenthe JH, Stahl F, Geerlings P. Chem. Eur. J. 2002; 8: 3402
- 4c Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J. Tetrahedron 2012; 68: 6548
- 4d Kleinpeter E, Koch A. Tetrahedron 2019; 75: 4663
- 5 Poater J, Bickelhaupt FM, Solà M. J. Phys. Chem. A 2007; 111: 5063
- 6a Schleyer P. vonR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ. R. J. Am. Chem. Soc. 1996; 118: 6317
- 6b Schleyer P. vonR, Jiao H, van Eikema Hommes NJ. R, Malkin VG, Malkina OL. J. Am. Chem. Soc. 1997; 119: 12669
- 6c Gershoni-Poranne R, Stanger A. Chem. Soc. Rev. 2015; 44: 6597
- 6d Stanger A. Eur. J. Org. Chem. 2020; 3120
- 7a Lampkin BJ, Karadakov PB, VanVeller B. Angew. Chem. Int. Ed. 2020; 59: 19275
- 7b Karadakov PB, VanVeller B. Chem. Commun. 2021; 57: 9504
- 8 Artigas A, Hagebaum-Reignier D, Carissan Y, Coquerel Y. Chem. Sci. 2021; 12: 13092
- 9 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision A.03 . Gaussian, Inc; Wallingford, CT: 2016
- 10a Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
- 10b Dunning TH. Jr. J. Chem. Phys. 1989; 90: 1007
- 10c Woon DE, Dunning TH. Jr. J. Chem. Phys. 1993; 98: 1358
- 11 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
- 12 Wolinski K, Hinton JF, Pulay P. J. Am. Chem. Soc. 1990; 112: 8251
- 13 Frisch MJ, Pople JA, Binkley JS. J. Chem. Phys. 1984; 80: 3265
- 14a Clar E. The Aromatic Sextet . Wiley-Interscience; London: 1972
- 14b Solà M. Front. Chem. 2013; 1: 22
- 15 Karadakov PB, Gerratt J, Raos G, Cooper DL, Raimondi M. Isr. J. Chem. 1993; 33: 253
- 16 Arora S, Hoye TR. Org. Lett. 2021; 23: 3349
- 17 Ikawa T, Yamamoto Y, Heguri A, Fukumoto Y, Murakami T, Takagi A, Masuda Y, Yahata K, Aoyama H, Shigeta Y, Tokiwa H, Akai S. J. Am. Chem. Soc. 2021; 143: 10853
- 18 Yen-Pon E, Buttard F, Frédéric L, Thuéry P, Taran F, Pieters G, Champagne PA, Audisio D. JACS Au 2021; 1: 807
- 19a Hosokawa T, Takahashi Y, Matsushima T, Watanabe S, Kikkawa S, Azumaya I, Tsurusaki A, Kamikawa K. J. Am. Chem. Soc. 2017; 139: 18512
- 19b Yubuta A, Hosokawa T, Gon M, Tanaka K, Chujo Y, Tsurusaki A, Kamikawa K. J. Am. Chem. Soc. 2020; 142: 10025
- 20a Sygula A, Sygula R, Rabideau PW. Org. Lett. 2005; 7: 4999
- 20b Sygula A, Sygula R, Kobryn L. Org. Lett. 2008; 10: 3927
- 21 For 2D IMS contour maps of corannulene, see: Karadakov PB. Chemistry 2021; 3: 861