Synthesis 2023; 55(02): 272-288
DOI: 10.1055/a-1868-8092
paper
Special Issue dedicated to Prof. Alain Krief

Radical Cyclization of Ynamides to Nitrogen Heterocycles

Chunyang Zhang
a   Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
b   Université de Haute-Alsace, Université de Strasbourg, CNRS,LIMA, UMR 7042, 68000 Mulhouse, France
,
Nicolas Blanchard
b   Université de Haute-Alsace, Université de Strasbourg, CNRS,LIMA, UMR 7042, 68000 Mulhouse, France
,
a   Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
› Institutsangaben
Our work was supported by the Université libre de Bruxelles (ULB) and the Région de Bruxelles-Capitale - Innoviris (2019-BRIDGE-5 PhotoCop). C.Z. acknowledges the China Scholarship Council (CSC) for a graduate fellowship.


Dedicated to Prof. Alain Krief on the occasion of his 80th birthday

Abstract

An efficient radical cyclization of suitably functionalized ynamides to nitrogen-containing heterocycles is reported. Upon reaction with tributyltin hydride in the presence of catalytic amounts of AIBN in toluene at 80 °C, a range of ynamides bearing a N-iodopropyl chain could be smoothly cyclized, in a highly regio- and stereoselective manner, to the corresponding 2-arylidenepyrrolidines in good to excellent yields. The exocyclic double bond was in addition shown to be an excellent anchor for further chemical diversification and the generality of this radical cyclization could be highlighted by its extension to the synthesis of other nitrogen heterocycles including piperidines, azepanes, pyrazolidines and hexahydropyridazines.

Supporting Information



Publikationsverlauf

Eingereicht: 04. Mai 2022

Angenommen nach Revision: 03. Juni 2022

Accepted Manuscript online:
03. Juni 2022

Artikel online veröffentlicht:
12. Juli 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 1b DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
    • 1c Evano G, Theunissen C, Lecomte M. Aldrichimica Acta 2015; 48: 59
  • 2 For a review, see: Zificsak CA, Mulder JA, Hsung RP, Rameshkumar C, Wei L.-L. Tetrahedron 2001; 57: 7575
  • 3 For a review, see: Evano G, Jouvin K, Coste A. Synthesis 2013; 45: 17

    • For representative general methods for the synthesis of ynamides, see:
    • 4a Zhang Y, Hsung RP, Tracey MR, Kurtz KC. M, Vera EL. Org. Lett. 2004; 6: 1151
    • 4b Hamada T, Ye X, Stahl SS. J. Am. Chem. Soc. 2008; 130: 833
    • 4c Coste A, Karthikeyan G, Couty F, Evano G. Angew. Chem. Int. Ed. 2009; 48: 4381
    • 4d Jouvin K, Couty F, Evano G. Org. Lett. 2010; 12: 3272
    • 4e Jouvin K, Heimburger J, Evano G. Chem. Sci. 2012; 3: 756
    • 4f Mansfield SJ, Campbell CD, Jones MW, Anderson EA. Chem. Commun. 2015; 51: 3316
    • 4g Mansfield J, Smith RC, Yong JR. J, Garry OL, Anderson EA. Org. Lett. 2019; 21: 2918
  • 5 For a review on the regioselectivity of reactions involving ynamides, see: Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
  • 6 For a review, see: Duret G, Le Fouler V, Bisseret P, Bizet V, Blanchard N. Eur. J. Org. Chem. 2017; 6816
  • 7 For a review, see: Evano G, Michelet B, Zhang C. C. R. Chim. 2017; 20: 648
  • 8 For a review, see: Evano G, Lecomte M, Thilmany P, Theunissen C. Synthesis 2017; 49: 3183

    • For reviews, see:
    • 9a Mahe C, Cariou K. Adv. Synth. Catal. 2020; 362: 4820
    • 9b Tan T.-D, Wang Z.-S, Qian P.-C, Ye L.-W. Small Methods 2021; 5: 2000673
    • 10a Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
    • 10b Beckwith AL. J, Easton CJ, Serelis AK. J. Chem. Soc., Chem. Commun. 1980; 482
    • 10c Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
    • 10d Alabugin IV, Gilmore K, Manoharan M. J. Am. Chem. Soc. 2011; 133: 12608
    • 10e Gilmore K, Mohamed RK, Alabugin IV. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016; 6: 487

      For selected examples, see:
    • 11a Gati W, Rammah MM, Rammah MB, Couty F, Evano G. J. Am. Chem. Soc. 2012; 134: 9078
    • 11b Gati W, Couty F, Boubaker T, Rammah MM, Rammah MB, Evano G. Org. Lett. 2013; 15: 3122
    • 11c Theunissen C, Metayer B, Henry N, Compain G, Marrot J, Martin-Mingot A, Thibaudeau S, Evano G. J. Am. Chem. Soc. 2014; 136: 12528
    • 11d Laouiti A, Couty F, Marrot J, Boubaker T, Rammah MM, Rammah MB, Evano G. Org. Lett. 2014; 16: 2252
    • 11e Laub HA, Evano G, Mayr H. Angew. Chem. Int. Ed. 2014; 53: 4968
    • 11f Lecomte M, Evano G. Angew. Chem. Int. Ed. 2016; 55: 4547
    • 11g Baguia H, Deldaele C, Romero E, Michelet B, Evano G. Synthesis 2018; 50: 3022
    • 11h Thilmany P, Evano G. Angew. Chem. Int. Ed. 2020; 59: 242
    • 11i Lecomte M, Lahboubi M, Thilmany P, El Bouzakhi A, Evano G. Chem. Sci. 2021; 12: 11157
    • 11j Thilmany P, Guarnieri-Ibáñez A, Jacob C, Lacour J, Evano G. ACS Org. Inorg. Au 2022; 2: 53
  • 12 Marion F, Courillon C, Malacria M. Org. Lett. 2003; 5: 5095
  • 13 Jacob C, Baguia H, Dubart A, Oger S, Thilmany P, Beaudelot J, Deldaele C, Peruško S, Landrain Y, Michelet B, Neale S, Romero E, Moucheron C, Van Speybroeck V, Theunissen C, Evano G. Nat. Commun. 2022; 13: 560
  • 14 Li S, Wang Y, Wu Z, Shi W, Lei Y, Davies PW, Shu W. Org. Lett. 2021; 23: 7209

    • For examples, see:
    • 15a Osornio YM, Miranda LD, Cruz-Almanza R, Muchowski JM. Tetrahedron Lett. 2004; 45: 2855
    • 15b Chuang T.-H, Lee S.-J, Yang C.-W, Wu P.-L. Org. Biomol. Chem. 2006; 4: 860
    • 15c Su C.-R, Damu AG, Chiang P.-C, Bastow KF, Morris-Natschke SL, Lee K.-H, Wu T.-S. Bioorg. Med. Chem. 2008; 16: 6233
  • 16 DeKorver KA, Walton MC, North TD, Hsung RP. Org. Lett. 2011; 13: 4862
  • 17 The stereochemistry of the E isomer was determined on the basis of nOe experiments. See the Supporting Information for details.
  • 18 Beveridge RE, Batey RA. Org. Lett. 2012; 14: 540
  • 19 Xu Y.-S, Tang Y, Feng H.-J, Liu J.-T, Hsung RP. Org. Lett. 2015; 17: 572
    • 20a Wong SS, Paddon-Row MN. J. Chem. Soc., Chem. Commun. 1991; 327
    • 20b Honjo T, Phipps RJ, Rauniyar V, Toste FD. Angew. Chem. Int. Ed. 2012; 51: 9684
  • 21 Chen C, Kattanguru P, Tomashenko OA, Karpowicz R, Siemiaszko G, Bhattacharya A, Calasans V, Six Y. Org. Biomol. Chem. 2017; 15: 5364
  • 22 The stereochemistry of 26 is based on the stereospecificity of the dichlorocyclopropanation, which has been notably reported in reference 20, and on the fact that the proton on the cyclopropane ring appears as a broad singlet in the 1H NMR spectrum, this proton being thus in proximity of the carbamate that exists as rotamers about the C–N bond.
    • 23a Bennett JE, Howard JA. Chem. Phys. Lett. 1971; 9: 460
    • 23b Neilson GW, Symons MC. R. J. Chem. Soc., Perkin Trans. 2 1973; 1405
    • 23c Ito O, Omori R, Matsuda M. J. Am. Chem. Soc. 1982; 104: 3934
    • 23d Kopchik RM, Kampmeier JA. J. Am. Chem. Soc. 1968; 90: 6733
    • 23e Singer LA, Chen J. Tetrahedron Lett. 1969; 10: 4849
  • 24 Ferreri C, Ballestri M, Chatgilialoglu C. Tetrahedron Lett. 1993; 34: 5147
  • 25 Chochrek P, Kurek-Tyrlik A, Michalak K, Wicha J. Tetrahedron Lett. 2006; 47: 6017
  • 26 Harrowven DC, Guy IL. Chem. Commun. 2004; 1968
  • 27 Szakonyi Z, D’hooghe M, Kanizsai I, Fülöp F, De Kimpe N. Tetrahedron 2005; 61: 1595
  • 28 Massah AR, Ross AJ, Jackson RF. W. J. Org. Chem. 2010; 75: 8275
  • 29 Beng TK, Gawley RE. J. Am. Chem. Soc. 2010; 132: 12216
  • 30 Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612