Dtsch Med Wochenschr 2023; 148(08): 441-450
DOI: 10.1055/a-1873-4250
Dossier

Klonale Hämatopoese (CHIP) und klonale Zytopenie unbestimmter Signifikanz (CCUS)

Was man heute schon in der Praxis wissen sollteClonal hematopoiesis of undetermined potential (CHIP) and clonal cytopenia of unknown significance (CCUS) Consequences for the clinic
Frank Ziemann
,
Klaus Hans Metzeler

In der 5. Auflage der WHO-Klassifikation für hämatologische Neoplasien wurden im Jahr 2022 erstmals die klonale Hämatopoese, die klonale Hämatopoese von unbestimmtem Potenzial und die klonale Zytopenie unbestimmter Signifikanz als eigenständige Entitäten im Spektrum der myeloischen Neoplasien mit aufgenommen [1]. Entsprechend stellt sich die Frage, welche praktische Relevanz diese Veränderungen bereits jetzt für den klinischen Alltag haben.

Abstract

Clonal hematopoiesis of indeterminate potential (CHIP) refers to the outgrowth of blood cells from a hematopoietic stem cell (HSC) clone that acquired one or more somatic mutations, leading to a growth advantage compared to wild type HSCs. In the last years this age-associated phenomenon has been extensively studied, and several cohort studies found association between CH and age-related diseases, esp. leukaemia and cardiovascular disease. For patients with CH present with abnormal blood counts, the term ‘clonal cytopenia of unknown significance’ is used, which carries a higher risk for developing myeloid neoplasms. In this year, CHIP and CCUS have been included in the updated WHO classification of hematolymphoid tumours. We review the current understanding of the emergence of CHIP, diagnostics, association with other diseases, and potential therapeutic interventions.

Kernaussagen
  • CH und CHIP beschreiben das (vorwiegend altersabhängige) Auftreten von Mutationen in hämatopoetischen Stammzellen und eine damit verbundene Expansion dieser Klone im Knochenmark und im peripheren Blut.

  • CHIP ist mit einem breiten Spektrum altersbedingter Erkrankungen assoziiert und führt zu einer verstärkten inflammatorischen Reaktion.

  • CHIP und insbesondere CCUS gehen mit einem erhöhten Risiko für eine hämatologische Neoplasie einher.

  • Bei Patienten mit soliden Tumoren und CHIP kann, abhängig von der vorliegenden Mutation, das Risiko für eine therapieassoziierte hämatologische Neoplasie deutlich gesteigert sein.

  • Aktuell gibt es keine evidenzbasierten Empfehlungen für ein Screening oder eine Therapie von CHIP und CCUS.



Publikationsverlauf

Artikel online veröffentlicht:
29. März 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Khoury JD, Solary E, Abla O. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022; 36: 1703-1719
  • 2 Busque L, Mio R, Mattioli J. et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 1996; 88: 59-65
  • 3 Busque L, Patel JP, Figueroa ME. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44: 1179-1181
  • 4 Genovese G, Kähler AK, Handsaker RE. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371: 2477-2487
  • 5 Jaiswal S, Fontanillas P, Flannick J. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371: 2488-2498
  • 6 Scala S, Aiuti A. In vivo dynamics of human hematopoietic stem cells: novel concepts and future directions. Blood Adv 2019; 3: 1916-1924
  • 7 Young AL, Challen GA, Birmann BM. et al. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 2016; 7: 12484
  • 8 Hecker JS, Hartmann L, Rivière J. et al. CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood 2021; 138: 1727-1732
  • 9 Mitchell E, Spencer Chapman M, Williams N. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022;
  • 10 Williams N, Lee J, Mitchell E. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 2022; 1-7
  • 11 Fabre MA, de Almeida JG, Fiorillo E. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 2022;
  • 12 Kar SP, Quiros PM, Gu M. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat Genet 2022; 54: 1155-1166
  • 13 Hansen JW, Pedersen DA, Larsen LA. et al. Clonal hematopoiesis in elderly twins: concordance, discordance, and mortality. Blood 2020; 135: 261-268
  • 14 SanMiguel JM, Young K, Trowbridge JJ. Hand in hand: intrinsic and extrinsic drivers of aging and clonal hematopoiesis. Exp Hematol 2020; 91: 1-9
  • 15 Haring B, Reiner AP, Liu J. et al. Healthy Lifestyle and Clonal Hematopoiesis of Indeterminate Potential: Results From the Women’s Health Initiative. J Am Heart Assoc 2021; 10: e018789
  • 16 Bhattacharya R, Zekavat SM, Uddin MM. et al. Association of Diet Quality With Prevalence of Clonal Hematopoiesis and Adverse Cardiovascular Events. JAMA Cardiol 2021; 6: 1069-1077
  • 17 Bolton KL, Ptashkin RN, Gao T. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 2020; 52: 1219-1226
  • 18 Miller PG, Gibson CJ, Mehta A. et al. Fitness Landscape of Clonal Hematopoiesis Under Selective Pressure of Immune Checkpoint Blockade. JCO Precis Oncol 2020; 4
  • 19 Zink F, Stacey SN, Norddahl GL. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 2017; 130: 742-752
  • 20 Kyle RA, Larson DR, Therneau TM. et al. Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance. N Engl J Med 2018; 378: 241-249
  • 21 Landgren O, Albitar M, Ma W. et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med 2009; 360: 659-667
  • 22 Niroula A, Sekar A, Murakami MA. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med 2021; 27: 1921-1927
  • 23 Gallì A, Todisco G, Catamo E. et al. Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood 2021; 138: 965-976
  • 24 van Zeventer IA, de Graaf AO, Wouters HJCM. et al. Mutational spectrum and dynamics of clonal hematopoiesis in anemia of older individuals. Blood 2020; 135: 1161-1170
  • 25 Malcovati L, Gallì A, Travaglino E. et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 2017; 129: 3371-3378
  • 26 Tanaka T, Morita K, Loghavi S. et al. Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood 2021; 138: 1733-1739
  • 27 Gaidzik VI, Weber D, Paschka P. et al. DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia 2018; 32: 30-37
  • 28 Hasserjian RP, Steensma DP, Graubert TA. et al. Clonal Hematopoiesis and Measurable Residual Disease Assessment in Acute Myeloid Leukemia. Blood 2020; 1729-1738
  • 29 Husby S, Favero F, Nielsen C. et al. Clinical impact of clonal hematopoiesis in patients with lymphoma undergoing ASCT: a national population-based cohort study. Leukemia 2020; 34: 3256-3268
  • 30 Soerensen JF, Aggerholm A, Kerndrup GB. et al. Clonal hematopoiesis predicts development of therapy-related myeloid neoplasms post-autologous stem cell transplantation. Blood Adv 2020; 4: 885-892
  • 31 Mouhieddine TH, Sperling AS, Redd R. et al. Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nat Commun 2020; 11: 2996
  • 32 Saini NY, Swoboda DM, Greenbaum U. et al. Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discov 2022; 3: 385-393
  • 33 Miller PG, Sperling AS, Brea EJ. et al. Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy. Blood Adv 2021; 5: 2982-2986
  • 34 Frick M, Chan W, Arends CM. et al. Role of Donor Clonal Hematopoiesis in Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol 2019; 37: 375-385
  • 35 Gibson CJ, Kim HT, Zhao L. et al. Donor Clonal Hematopoiesis and Recipient Outcomes After Transplantation. J Clin Oncol 2022; 40: 189-201
  • 36 Jaiswal S, Natarajan P, Silver AJ. et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med 2017; 377: 111-121
  • 37 Bhattacharya R, Zekavat SM, Haessler J. et al. Clonal Hematopoiesis Is Associated With Higher Risk of Stroke. Stroke 2022; 53: 788-797
  • 38 Yu B, Roberts MB, Raffield LM. et al. Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure. J Am Coll Cardiol 2021; 78: 42-52
  • 39 Mas-Peiro S, Hoffmann J, Fichtlscherer S. et al. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur Heart J 2020; 41: 933-939
  • 40 Fuster JJ, MacLauchlan S, Zuriaga MA. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017; 355: 842-847
  • 41 Bekele DI, Patnaik MM. Autoimmunity, Clonal Hematopoiesis, and Myeloid Neoplasms. Rheum Dis Clin North Am 2020; 46: 429-444
  • 42 Miller PG, Sperling AS, Gibson CJ. et al. Contribution of clonal hematopoiesis to adult-onset hemophagocytic lymphohistiocytosis. Blood 2020; 136: 3051-3055
  • 43 Kwan TT, Oza AM, Tinker AV. et al. Preexisting TP53-Variant Clonal Hematopoiesis and Risk of Secondary Myeloid Neoplasms in Patients With High-grade Ovarian Cancer Treated With Rucaparib. JAMA Oncol 2021; 7: 1772-1781
  • 44 Kayser S, Döhner K, Krauter J. et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 2011; 117: 2137-2145
  • 45 Miller PG, Steensma DP. Implications of Clonal Hematopoiesis for Precision Oncology. JCO Precis Oncol 2020; 4: 639-646
  • 46 Kim PG, Niroula A, Shkolnik V. et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J Exp Med 2021; 218
  • 47 Miller PG, Qiao D, Rojas-Quintero J. et al. Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood 2022; 139: 357-368
  • 48 Perner F, Perner C, Ernst T. et al. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells 2019; 8
  • 49 Dawoud AAZ, Gilbert RD, Tapper WJ. et al. Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease. Leukemia 2022; 36: 507-515
  • 50 Bouzid H, Belk J, Jan M. et al. Clonal Hematopoiesis is Associated with Reduced Risk of Alzheimer’s Disease. Blood 2021; 138: 5
  • 51 Bolton KL, Zehir A, Ptashkin RN. et al. The Clinical Management of Clonal Hematopoiesis: Creation of a Clonal Hematopoiesis Clinic. Hematol Oncol Clin North Am 2020; 34: 357-367
  • 52 Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2022; 101001
  • 53 Ridker PM, Everett BM, Thuren T. et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 2017; 377: 1119-1131
  • 54 Svensson EC, Madar A, Campbell CD. et al. TET2-driven clonal hematopoiesis predicts enhanced response to canakinumab in the CANTOS trial: an exploratory analysis. Circulation 2018; 138: A15111-A15111