RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2022; 54(20): 4592-4600
DOI: 10.1055/a-1874-4829
DOI: 10.1055/a-1874-4829
paper
Stereoselective Synthesis of β-Thiolated Aryl Amino Acids
We acknowledge the financial support for this work from Shanghai Pilot Program for Basic Research - Shanghai Jiao Tong University (21TQ1400210), the National Natural Science Foundation of China (22107068, 22077080 and 21907064), and Special Projects of the Central Government in Guidance of Local Science and Technology Development (2021Szvup077).
Abstract
A variety of β-thiolated aryl amino acids were readily synthesized in moderate to excellent yields via 1,4-addition from a readily-accessible thiazoline precursor, which can be prepared from cysteine methyl ester hydrochloride in just three steps. The thiolated products can be subsequently deprotected within one single step in high yields and used directly for subsequent solid-phase peptide synthesis.
Key words
β-thiolated amino acids - Giese reaction - Michael reaction - cysteine surrogates - native chemical ligationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1874-4829.
- Supporting Information
Publikationsverlauf
Eingereicht: 15. Mai 2022
Angenommen nach Revision: 13. Juni 2022
Accepted Manuscript online:
13. Juni 2022
Artikel online veröffentlicht:
20. Juli 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Mamathambika BS, Bardwell JC. Annu. Rev. Cell Dev. Biol. 2008; 24: 211
- 1b Jacob C, Giles GI, Giles NM, Sies H. Angew. Chem. Int. Ed. 2003; 42: 4742
- 1c Zhang R, Genov M, Pretsch A, Pretsch D, Moloney MG. Chem. Sci. 2021; 12: 16106
- 2a Paulsen CE, Carroll KS. Chem. Rev. 2013; 113: 4633
- 2b Hartle MD, Pluth MD. Chem. Soc. Rev. 2016; 45: 6108
- 3a Jacob C, Giles GI, Giles NM, Sies H. Angew. Chem. Int. Ed. 2003; 42: 4742
- 3b Marino SM, Gladyshev VN. J. Mol. Biol. 2010; 404: 902
- 3c Fass D, Thorpe C. Chem. Rev. 2018; 118: 1169
- 4a Davie EA. C, Mennen SM, Xu Y, Miller SJ. Chem. Rev. 2007; 107: 5759
- 4b Hruby VJ. Acc. Chem. Res. 2001; 34: 389
- 5a Bondalapati S, Jbara M, Brik A. Nat. Chem. 2016; 8: 407
- 5b Dawson Philip E, Muir Tom W, Clark-Lewis I, Kent Stephen BH. Science 1994; 266: 776
- 5c Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Angew. Chem. Int. Ed. 2021; 60: 12904
- 6a Yan LZ, Dawson PE. J. Am. Chem. Soc. 2001; 123: 526
- 6b Wan Q, Danishefsky SJ. Angew. Chem. Int. Ed. 2007; 46: 9248
- 6c Wang S, Thopate YA, Zhou Q, Wang P. Chin. J. Chem. 2019; 37: 1181
- 6d Giesler RJ, Erickson PW, Kay MS. Curr. Opin. Chem. Biol. 2020; 58: 37
- 6e Wang S, Zhou Q, Li Y, Wei B, Liu X, Zhao J, Ye F, Zhou Z, Ding B, Wang P. J. Am. Chem. Soc. 2022; 144: 1232
- 7 Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
- 8a Tan Z, Shang S, Danishefsky SJ. Angew. Chem. Int. Ed. 2010; 49: 9500
- 8b Malins LR, Giltrap AM, Dowman LJ, Payne RJ. Org. Lett. 2015; 17: 2070
- 8c Kulkarni SS, Sayers J, Premdjee B, Payne RJ. Nat. Rev. Chem. 2018; 2: 0122
- 9a Seebach D, Sting AR, Hoffmann M. Angew. Chem. Int. Ed. 1996; 35: 2708
- 9b Polt R, Seebach D. J. Am. Chem. Soc. 1989; 111: 2622
- 9c Jeanguenat A, Seebach D. J. Chem. Soc., Perkin Trans. 1 1991; 2291
- 10 Yin H, Zheng M, Chen H, Wang S, Zhou Q, Zhang Q, Wang P. J. Am. Chem. Soc. 2020; 142: 14201
- 11 McCaldon P, Argos P. Proteins 1988; 4: 99
- 12a Bootsma AN, Doney AC, Wheeler SE. J. Am. Chem. Soc. 2019; 141: 11027
- 12b Heringa J, Argos P. J. Mol. Biol. 1991; 220: 151
- 13a Crich D, Banerjee A. J. Am. Chem. Soc. 2007; 129: 10064
- 13b Malins LR, Giltrap AM, Dowman LJ, Payne RJ. Org. Lett. 2015; 17: 2070
- 13c Morishita Y, Kaino T, Okamoto R, Izumi M, Kajihara Y. Tetrahedron Lett. 2015; 56: 6565
- 14a Andrieux CP, Blocman C, Dumas-Bouchiat JM, Saveant JM. J. Am. Chem. Soc. 1979; 101: 3431
- 14b Costentin C, Robert M, Savéant J.-M. J. Am. Chem. Soc. 2004; 126: 16051
- 14c Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
- 14d Ghosh I, Ghosh T, Bardagi Javier I, König B. Science 2014; 346: 725
- 15 Rosso JA, Bertolotti SG, Braun AM, Mártire DO, Gonzalez MC. J. Phys. Org. Chem. 2001; 14: 300
- 16a Wang H, Gao Y, Zhou C, Li G. J. Am. Chem. Soc. 2020; 142: 8122
- 16b Flynn AR, McDaniel KA, Hughes ME, Vogt DB, Jui NT. J. Am. Chem. Soc. 2020; 142: 9163
- 16c Huang H.-M, Bellotti P, Erchinger JE, Paulisch TO, Glorius F. J. Am. Chem. Soc. 2022; 144: 1899
- 16d Chmiel AF, Williams OP, Chernowsky CP, Yeung CS, Wickens ZK. J. Am. Chem. Soc. 2021; 143: 10882
- 17a Kingsbury CL, Sharp KS, Smith RA. J. Tetrahedron 1999; 55: 14693
- 17b House HO, Chu C.-Y, Wilkins JM, Umen MJ. J. Org. Chem. 1975; 40: 1460
- 17c Bertz SH, Gibson CP, Dabbagh G. Tetrahedron Lett. 1987; 28: 4251
- 17d Dambacher J, Bergdahl M. J. Org. Chem. 2005; 70: 580
- 18a Kleijn H, Elsevier CJ, Westmijze H, Meijer J, Vermeer P. Tetrahedron Lett. 1979; 20: 3101
- 18b Marfat A, McGuirk PR, Helquist P. J. Org. Chem. 1979; 44: 3888
- 19 Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Chem. Rev. 2019; 119: 10718
- 20 Wang S, Zhou Q, Chen X, Luo R.-H, Li Y, Liu X, Yang L.-M, Zheng Y.-T, Wang P. Nat. Commun. 2021; 12: 2257
- 21 Gracia-Vitoria J, Osante I, Cativiela C, Merino P, Tejero T. J. Org. Chem. 2018; 83: 3960
For selected examples, see:
For selected examples, see:
For selected examples, see: