Synthesis 2022; 54(20): 4509-4512
DOI: 10.1055/a-1878-8448
paper

A Novel and Practical Synthesis of Tryptanthrin

Yong He
a   School of Chemistry and Chemical Engineering, Hefei University of Technology,Hefei 230009, P. R. of China
b   Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, P. R. of China
,
Shiyun Chen
c   Analytical &Testing Center, Hefei University, Hefei230601
,
Yonghao Gao
a   School of Chemistry and Chemical Engineering, Hefei University of Technology,Hefei 230009, P. R. of China
,
Shuangying Gui
b   Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, P. R. of China
d   Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. of China
,
Yisi Feng
a   School of Chemistry and Chemical Engineering, Hefei University of Technology,Hefei 230009, P. R. of China
› Author Affiliations
The Key project of Anhui Provincial Department of Education, China (NO. KJ2020A672) and The Open Fund Project of Anhui Key Laboratory of Pharmaceutical Preparation Technology and Application (NO. 2021KFKT01 and 2021KFKT08).


Abstract

Tryptanthrin was synthesized through a two-step reaction of oxidation and condensation in a one-pot method, with isatin and sodium hypochlorite as starting materials. The influence of sodium hypochlorite, acetonitrile dosage, oxidation reaction temperature, and reaction time on the yield of the target product during the reaction was investigated. The following optimal reaction conditions were obtained: the ratio of n (isatin) to n (sodium hypochlorite) was 2:1, and the reaction time was 6–8 hours at room temperature. The structure of tryptanthrin was confirmed by matching the IR, NMR, and mass data with the literature report. The study shows that the chemical reaction route designed in this report is short, with high yield and purity of the target product. Its low production cost and simple operation method are expected to be applicable to industrial production.

Supporting Information



Publication History

Received: 24 April 2022

Accepted after revision: 20 June 2022

Accepted Manuscript online:
20 June 2022

Article published online:
02 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Danz H, Stoyanova S, Wippich P, Brattstroem A, Hamburger M. Planta Med. 2001; 67: 411
    • 2a Bandekar PP, Roopnarine KA, Parekh VJ, Mitchell TR, Novak MJ, Sinden RR. J. Med. Chem. 2010; 53: 3558
    • 2b Zheng XD, Hou BL, Wang R, Wang YY, Wang CL, Chen H, Liu L, Wang JL, Ma XM, Liu JL. Tetrahedron 2019; 48: 130351
    • 2c Amara R, Awad H, Chaker D, Bentabed-Ababsa G, Lassagne F, Erb W, Chevallier F, Roisnel T, Dorcet V, Fajloun Z. Eur. J. Org. Chem. 2019; 5302
    • 2d Zhang SN, Qi FF, Fang X, Yang D, Hu HR, Huang Q, Kuang CX, Yang Q. Eur. J. Med. Chem. 2018; 160: 133
    • 2e Gao JY, Chang CS, Lien JC, Chen TW, Hu JL, Weng JR. Biomedicines 2021; 11: 1527
  • 3 Bhattacharjee AK, Skanchy DJ, Jennings B, Hudson TH, Brendle JJ, Werbovetz KA. Bioorg. Med. Chem. 2002; 10: 1979
  • 4 Hwang JM, Oh T, Kaneko T, Upton AM, Franzblau SG, Ma Z, Cho SN, Kim P. J. Nat. Prod. 2013; 76: 354
    • 5a Moskovkina TV, Kalinovskii AI, Makhan’kov VV. Russ. J. Org. Chem. 1997; 1: 125
    • 5b Lee ES, Park JG, Jahng Y. Tetrahedron. Lett. 2003; 44: 1883
  • 6 Wang C, Zhang L, Ren A, Lu P, Wang Y. Org. Lett. 2013; 15: 2982
  • 7 Liang J, Park SE, Kwon Y, Jahng Y. Bioorg. Med. Chem. 2012; 20: 4962
  • 8 Kumar A, Tripathi VD, Kumar P. Green Chem. 2011; 13: 51
  • 9 Yang S, Li X, Hu F, Li Y, Yang Y, Yan J, Kuang C, Yang Q. J. Med. Chem. 2013; 56: 8321
  • 10 Abe T, Itoh T, Choshi T, Hibino S, Ishikura M. Tetrahedron Lett. 2014; 55: 5268
  • 11 Amara R, Awad H, Chaker D, Bentabed-Ababsa G, Lassagne F, Erb W, Chevallier F, Roisnel T, Dorcet V, Fajloun Z, Vidal J, Mongin F. Eur. J. Org. Chem. 2019; 4969
  • 12 Hong H, Li H, Ying H, Yan C. Org. Chem. Front. 2018; 5: 51
  • 13 Liao H, Peng X, Hu D, Xu X, Huang P, Liu Q, Liu L. Org. Biomol. Chem. 2018; 16: 5699
  • 14 Reddy B, Reddy DM, Reddy GN, Reddy MR, Reddy VK. Eur. J. Org. Chem. 2016; 8018
  • 15 Popov A, Klimovich A, Styshova O, Moskovkina T, Stonik V. Int. J. Mol. Med. 2020; 46: 1335
  • 16 Xie L, Lu C, Jing D, Ou X, Zheng K. Eur. J. Org. Chem. 2019; 3649
  • 17 Deryabin PI, Moskovkina TV, Bukreev AV, Andina AV, Gerasimenko AV. Russ. J. Org. Chem. 2018; 54: 622
  • 18 Venkata U, Reddy S, Chennapuram M, Seki K, Nakano H. Eur. J. Org. Chem. 2017; 3874
  • 19 Guda R, Korra R, Balaji S, Palabindela R, Eerla R, Lingabathula H, Yellu NR, Kumar G, Kasula M. Bioorg. Med. Chem. Lett. 2017; 27: 4741
  • 20 Jia FC, Zhou ZW, Xu C, Wu YD, Wu AX. Org. Lett. 2016; 18: 2942
  • 21 Clark DA, Lahm GP, Smith BK, Barry JD, Clagg DG. Bioorg. Med. Chem. 2008; 16: 3163