Klin Monbl Augenheilkd 2022; 239(08): 960-970
DOI: 10.1055/a-1896-0738
Übersicht

Update on Biometry and Lens Calculation – A Review of the Basic Principles and New Developments

Article in several languages: deutsch | English
1   IROC, Institut für Refraktive und Ophthalmo-Chirurgie, Zürich, Schweiz
2   Abteilung für Augenheilkunde und Optometrie, Johannes Kepler Universität Linz, Österreich
3   Institut für Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar, Deutschland
,
Thomas Kohnen
4   Klinik für Augenheilkunde, Goethe-Universität, Frankfurt, Deutschland
,
Marina Casazza
2   Abteilung für Augenheilkunde und Optometrie, Johannes Kepler Universität Linz, Österreich
,
Michael Heath
5   College of Medicine, University of Oklahoma, Norman, Oklahoma, United States
,
6   University of Oklahoma, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
,
David L. Cooke
7   Great Lakes Eye Care, Saint Joseph, United States
8   Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan, United States
,
Peter Hoffmann
9   Augen- und Laserklinik Castrop-Rauxel, Deutschland
,
Achim Langenbucher
3   Institut für Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar, Deutschland
› Author Affiliations

Abstract

These days, accurate calculation of artificial lenses is an important aspect of patient management. In addition to the classic theoretical optical formulae there are a number of new approaches, most of which are available as online calculators. This review aims to explain the background of artificial lens calculation and provide an update on study results based on the latest calculation approaches. Today, optical biometry provides the computational basis for theoretical optical formulae, ray tracing, and also empirical approaches using artificial intelligence. Manufacturer information on IOL design and IOL power recorded as part of quality control could improve calculations, especially for higher IOL powers. With modern measurement data, there is further potential for improvement in the determination of the axial length to the retinal pigment epithelium and by adopting a sum-of-segment approach. With the available data, the cornea can be assumed to be a thick lens. The Kane formula, the EVO 2.0 formula, the Castrop formula, the PEARL-DGS, formula and the OKULIX calculation software provide consistently good results for artificial lens calculations. Excellent refractive results can be achieved using these tools, with approximately 80% having an absolute prediction error within 0.50 dpt, at least in highly selected study populations. The Barrett Universal II formula also produces excellent results in the normal and long axial length range. For eyes with short axial lengths, the use of Barrett Universal II should be reconsidered; in this case, one of the methods mentioned above is preferable. Second Eye Refinement can also be considered in this patient population, in conjunction with established classic third generation formulae.



Publication History

Received: 27 June 2022

Accepted: 30 June 2022

Article published online:
16 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Sanders DR, Kraff MC. Improvement of intraocular lens power calculation using empirical data. J Am Intraocul Implant Soc 1980; 6: 263-267
  • 2 Langenbucher A, Szentmáry N, Wendelstein J. et al. Artificial Intelligence, Machine Learning and Calculation of Intraocular Lens Power. Klin Monbl Augenheilkd 2020; 237: 1430-1437
  • 3 Liou HL, Brennan NA. Anatomically accurate, finite model eye for optical modeling. J Opt Soc Am A Opt Image Sci Vis 1997; 14: 1684-1695
  • 4 Navarro R, Santamaría J, Bescós J. Accommodation-dependent model of the human eye with aspherics. J Opt Soc Am A 1985; 2: 1273-1281
  • 5 Atchison DA. Age-related paraxial schematic emmetropic eyes. Ophthalmic Physiol Opt 2009; 29: 58-64
  • 6 Gullstrand A. Anhang zu Teil 1. Bd. 1. von Helmholtz H. Physiologische Optik. 3. Aufl.. Hamburg: Voss; 1909
  • 7 Fyodorov SN, Galin MA, Linksz A. Calculation of the optical power of intraocular lenses. Invest Ophthalmol 1975; 14: 625-628
  • 8 Gernet H, Ostholt H, Werner H. Die präoperative Berechnung intraocularer Binkhorst-Linsen. 122. Versammlung des Vereins Rheinisch-Westfälischer Augenärzte 1970; 54-55
  • 9 Drexler W, Findl O, Menapace R. et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998; 126: 524-534
  • 10 Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg 2008; 34: 368-376
  • 11 Norrby NE, Koranyi G. Prediction of intraocular lens power using the lens haptic plane concept. J Cataract Refract Surg 1997; 23: 254-259
  • 12 Haigis W, Lege B, Miller N. et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000; 238: 765-773
  • 13 Faria-Ribeiro M, Lopes-Ferreira D, López-Gil N. et al. Errors associated with IOLMaster biometry as a function of internal ocular dimensions. J Optom 2014; 7: 75-78
  • 14 Cooke DL, Cooke TL. Approximating sum-of-segments axial length from a traditional optical low-coherence reflectometry measurement. J Cataract Refract Surg 2019; 45: 351-354
  • 15 Cooke DL, Cooke TL. A comparison of two methods to calculate axial length. J Cataract Refract Surg 2019; 45: 284-292
  • 16 Cooke DL, Cooke TL, Suheimat M. et al. Standardizing sum-of-segments axial length using refractive index models. Biomed Opt Express 2020; 11: 5860-5870
  • 17 Cooke DL, Cooke TL, Atchison DA. Effect of cataract-induced refractive change on intraocular lens power formula predictions. Biomed Opt Express 2021; 12: 2550-2556
  • 18 Grein HJ, Schmidt O, Ritsche A. Reproducibility of subjective refraction measurement. Ophthalmologe 2014; 111: 1057-1064
  • 19 Ota Y, Minami K, Oki S. et al. Subjective and objective refractions in eyes with extended-depth-of-focus intraocular lenses using echelette optics: clinical and experimental study. Acta Ophthalmol 2021; 99: e837-e843
  • 20 Garzón N, Poyales F, García-Montero M. et al. Impact of Lens Material on Objective Refraction in Eyes with Trifocal Diffractive Intraocular Lenses. Curr Eye Res 2022; 47: 51-61
  • 21 Aristodemou P, Knox Cartwright NE, Sparrow JM. et al. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery. J Cataract Refract Surg 2011; 37: 50-62
  • 22 Hoffer KJ, Aramberri J, Haigis W. et al. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 2015; 160: 403-405.e1
  • 23 Wang L, Koch DD, Hill W. et al. Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg 2017; 43: 999-1002
  • 24 Langenbucher A, Szentmáry N, Cayless A. et al. Strategies for formula constant optimisation for intraocular lens power calculation. PLoS One 2022; 17: e0267352
  • 25 Langenbucher A, Szentmáry N, Cayless A. et al. IOL formula constants – strategies for optimization and defining standards for presenting data. Ophthalmic Res 2021; 64: 1055-1067
  • 26 Langenbucher A, Schwemm M, Eppig T. et al. Optimal Dataset Sizes for Constant Optimization in Published Theoretical Optical Formulae. Curr Eye Res 2021; 46: 1589-1596
  • 27 Sanders DR, Retzlaff J, Kraff MC. Comparison of the SRK II formula and other second generation formulas. J Cataract Refract Surg 1988; 14: 136-141
  • 28 Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990; 16: 333-340
  • 29 Holladay JT, Musgrove KH, Prager TC. et al. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg 1988; 14: 17-24
  • 30 Zuberbuhler B, Morrell AJ. Errata in printed Hoffer Q formula. J Cataract Refract Surg 2007; 33: 2 author reply 2–3
  • 31 Hoffer KJ. The Hoffer Q formula: A comparison of theoretic and regression formulas. J Cataract Refract Surg 1993; 19: 700-712
  • 32 Barrett GD. An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg 1993; 19: 713-720
  • 33 Olsen T, Hoffmann P. C constant: new concept for ray tracing-assisted intraocular lens power calculation. J Cataract Refract Surg 2014; 40: 764-773
  • 34 Wendelstein J, Hoffmann P, Hirnschall N. et al. Project hyperopic power prediction: accuracy of 13 different concepts for intraocular lens calculation in short eyes. Br J Ophthalmol 2021; 106: 795-801
  • 35 Langenbucher A, Szentmáry N, Cayless A. et al. The Castrop formula for calculation of toric intraocular lenses. Graefes Arch Clin Exp Ophthalmol 2021; 259: 3321-3331
  • 36 Langenbucher A, Szentmáry N, Cayless A. et al. Considerations on the Castrop formula for calculation of intraocular lens power. PLoS One 2021; 16: e0252102
  • 37 Debellemanière G, Dubois M, Gauvin M. et al. The PEARL-DGS Formula: The Development of an Open-source Machine Learning-based Thick IOL Calculation Formula. Am J Ophthalmol 2021; 232: 58-69
  • 38 Gatinel D, Debellemanière G, Saad A. et al. Determining the Theoretical Effective Lens Position of Thick Intraocular Lenses for Machine Learning-Based IOL Power Calculation and Simulation. Transl Vis Sci Technol 2021; 10: 27
  • 39 Röggla V, Langenbucher A, Leydolt C. et al. Accuracy of common IOL power formulas in 611 eyes based on axial length and corneal power ranges. Br J Ophthalmol 2021; 105: 1661-1665
  • 40 Wang L, Shirayama M, Ma XJ. et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg 2011; 37: 2018-2027
  • 41 Kim JW, Eom Y, Yoon EG. et al. Algorithmic intraocular lens power calculation formula selection by keratometry, anterior chamber depth and axial length. Acta Ophthalmol 2022; 100: e701-e709
  • 42 Terzi E, Wang L, Kohnen T. Accuracy of modern intraocular lens power calculation formulas in refractive lens exchange for high myopia and high hyperopia. J Cataract Refract Surg 2009; 35: 1181-1189
  • 43 Kane JX, van Heerden A, Atik A. et al. Intraocular lens power formula accuracy: Comparison of 7 formulas. J Cataract Refract Surg 2016; 42: 1490-1500
  • 44 Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology 2018; 125: 169-178
  • 45 Melles RB, Kane JX, Olsen T. et al. Update on Intraocular Lens Calculation Formulas. Ophthalmology 2019; 126: 1334-1335
  • 46 Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol 2019; 4: e000251
  • 47 Darcy K, Gunn D, Tavassoli S. et al. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg 2020; 46: 2-7
  • 48 Hipólito-Fernandes D, Elisa Luís M, Gil P. et al. VRF-G, a New Intraocular Lens Power Calculation Formula: A 13-Formulas Comparison Study. Clin Ophthalmol 2020; 14: 4395-4402
  • 49 Kane JX, Melles RB. Intraocular lens formula comparison in axial hyperopia with a high-power intraocular lens of 30 or more diopters. J Cataract Refract Surg 2020; 46: 1236-1239
  • 50 Shammas HJ, Taroni L, Pellegrini M. et al. Accuracy of newer IOL power formulas in short and long eyes using sum-of-segments biometry. J Cataract Refract Surg 2022;
  • 51 Wendelstein JA, Reifeltshammer SA, Hoffmann PC. et al. Project Hyperopic Power Prediction II: The Effects of Second Eye Refinement Methods on Prediction Error in Hyperopic Eyes. Curr Eye Res 2022;
  • 52 Mao Y, Li J, Xu Y. et al. Refractive outcomes of second-eye adjustment methods on intraocular lens power calculation in second eye. Clin Experiment Ophthalmol 2021; 49: 1009-1017