Subscribe to RSS
DOI: 10.1055/a-1901-7814
Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT
Einfluss von Lungenrekonstruktionsalgorithmen auf die Erkennung von interstitiellen Lungenmustern in der ComputertomografieAbstract
Background
Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD).
Purpose
To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns.
Materials and Methods
We retrospectively extracted between 15–25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results.
Results
The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73–1.06; p = 0.187). Furthermore, the consultants’ odds of correct pattern recognition was 78 % higher than the residents’ odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62–5.06; p = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ± 0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ± 0.17/κ = 0.38 ± 0.17.
Conclusion
There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification.
Key points:
-
There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease.
-
There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification.
-
These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis.
Citation Format
-
Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2023; 195: 47 – 54
Zusammenfassung
Hintergrund
Trotz den aktuellen Empfehlungen gibt es keine aktuelle wissenschaftliche Studie, welche den Einfluss von CT-Rekonstruktionskernels auf die Erkennung von Mustern der interstitiellen Lungenerkrankungen (ILD) vergleicht.
Ziel
Untersuchung der Sensitivität von scharfen Lungen- (i70) und weichen Weichteil- (i30) CT-Rekonstruktionskernels zur Diagnose von ILD-Mustern.
Material und Methoden
Retrospektiv wurden von 23 Probanden 15–25 Muster annotiert (1 Annotation = 15 Schichten à 1 mm), was 408 Annotations-Stapel pro Lungen- und Weichteilkernel ergab. 2 subspezialisierte Thorax-Radiologen definierten den Referenzstandard im Konsens. 4 Assistenzärzte, 2 Thorax-Fellows und 2 Fachärzte mit 3–13 Jahren Erfahrung in der Radiologie beurteilten die Daten verblindet. Aufgrund der mehrfach geclusterten Daten wurde ein generalisiertes lineares gemischtes Modell (GLMM) mit den Interaktionstermen Kernel/Erfahrung zur Analyse verwendet.
Ergebnisse
Die Resultate des GLMM deuteten eine um 12 % niedrigere Treffsicherheit für die korrekte Mustererkennung an beim Verwenden des Lungenkernels im Vergleich zum Weichteilkernel, jedoch erreichten die Resultate keine statistische Signifikanz (OR 0.88; 95%-CI, 0.73–1.06; p = 0.187). Des Weiteren zeigten die Fachärzte eine um 78 % höhere Wahrscheinlichkeit der korrekten Mustererkennung im Vergleich zu den Assistenzärzten, doch auch dieses Resultat war nicht statistisch signifikant (OR 1.78; 95%-KI 0.62–5.06; p = 0.283). Die Intra-rater-Übereinstimmung war substantiell (κ = 0.63 ± 0.19), die gemittelte Inter-rater-Übereinstimmung für Lungen-/Weichteilkernel betrug κ = 0.37 ± 0.17/κ = 0.38 ± 0.17.
Schlussfolgerung
Insgesamt gab es keinen signifikanten Einfluss von CT-Kernel oder Erfahrung des befundenden Radiologen auf die korrekte Erkennung von ILD-Mustern. Es gibt nicht-signifikante Trends, dass die Verwendung eines Weichteilkernels und eine größere Erfahrung zu einer höheren Wahrscheinlichkeit der korrekten Mustererkennung führen.
Kernaussagen:
-
Es besteht kein signifikanter Unterschied zwischen mit Lungen- und Weichteilkernel-rekonstruierten CT-Bildern für die korrekte Erkennung von ILD-Mustern.
-
Es gibt sogar nicht-signifikante Trends, dass die Verwendung des Weichteilkernels mit höherer Wahrscheinlichkeit zu einer korrekten Mustererkennung führt.
-
Diese Ergebnisse stellen die aktuellen Empfehlungen und die routinemässig durchgeführten separaten Lungenkernelrekonstruktionen für die Analyse des Lungenparenchyms in Frage.
Publication History
Received: 16 November 2021
Accepted: 09 May 2022
Article published online:
06 September 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lynch DA, Sverzellati N, Travis WD. et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med 2018; 6: 138-153 DOI: 10.1016/S2213-2600(17)30433-2.
- 2 Lynch DA, Travis WD, Müller NL. et al. Idiopathic interstitial pneumonias: CT features. Radiology 2005; 236: 10-21 DOI: 10.1148/radiol.2361031674.
- 3 Ebner L, Christodoulidis S, Stathopoulou T. et al. Meta-analysis of the radiological and clinical features of Usual Interstitial Pneumonia (UIP) and Nonspecific Interstitial Pneumonia (NSIP). PLoS One 2020; 15 DOI: 10.1371/journal.pone.0226084.
- 4 Raghu G, Collard HR, Egan JJ. et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011; 183: 788-824 DOI: 10.1164/rccm.2009-040GL.
- 5 Raghu G, Remy-Jardin M, Myers JL. et al. Diagnosis of idiopathic pulmonary fibrosis An Official ATS/ERS/JRS/ALAT Clinical practice guideline. Am J Respir Crit Care Med 2018; 198: e44-e68 DOI: 10.1164/rccm.201807-1255ST.
- 6 Funke-Chambour M, Guler SA, Geiser T. et al. New radiological diagnostic criteria: Impact on idiopathic pulmonary fibrosis diagnosis. Eur Respir J 2019; 54 DOI: 10.1183/13993003.00905-2019.
- 7 Mayo JR. CT evaluation of diffuse infiltrative lung disease: Dose considerations and optimal technique. J Thorac Imaging 2009; 24: 252-259 DOI: 10.1097/RTI.0b013e3181c227b2.
- 8 Bankier AA, MacMahon H, Goo JM. et al. Recommendations for measuring pulmonary nodules at CT: A statement from the Fleischner society. Radiology 2017; 285: 584-600 DOI: 10.1148/radiol.2017162894.
- 9 Mayo JR, Webb WR, Gould R. et al. High-resolution CT of the lungs: An optimal approach. Radiology 1987; 163: 507-510 DOI: 10.1148/radiology.163.2.3562834.
- 10 Christe A, Leidolt L, Huber A. et al. Lung cancer screening with CT: Evaluation of radiologists anddifferent computer assisted detection software (CAD) as first andsecond readers for lung nodule detection at different dose levels. Eur J Radiol 2013; 82 DOI: 10.1016/j.ejrad.2013.08.026.
- 11 Ravenel JG, Leue WM, Nietert PJ. et al. Pulmonary nodule volume: Effects of reconstruction parameters on automated measurements – A phantom study. Radiology 2008; 247: 400-408 DOI: 10.1148/radiol.2472070868.
- 12 Takagi S, Nagase H, Hayashi T. et al. Combined multi-kernel chest computed tomography images optimized for depicting both lung and soft tissue. Clin Imaging 2014; 38: 104-108 DOI: 10.1016/j.clinimag.2013.11.009.
- 13 Solomon J, Mileto A, Nelson RC. et al. Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: Dependency on radiation dose and reconstruction algorithm. Radiology 2016; 279: 185-194 DOI: 10.1148/radiol.2015150892.
- 14 Ebner L, Roos JE, Christensen JD. et al. Maximum-intensity-projection and computer-aided-detection algorithms as stand-alone reader devices in lung cancer screening using different dose levels and reconstruction kernels. Am J Roentgenol 2016; 207: 282-288 DOI: 10.2214/Am J Roentgenol.15.15588.
- 15 Gallardo-Estrella L, Lynch DA, Prokop M. et al. Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification. Eur Radiol 2016; 26: 478-486 DOI: 10.1007/s00330-015-3824-y.
- 16 Alikhani B, Jamali L, Raatschen HJ. et al. Impact of CT parameters on the physical quantities related to image quality for two MDCT scanners using the ACR accreditation phantom: A phantom study. Radiography 2017; 23: 202-210 DOI: 10.1016/j.radi.2017.03.013.
- 17 Murata K, Khan A, Rojas KA. et al. Optimization of computed tomography technique to demonstrate the fine structure of the lung. Invest Radiol 1988; 23: 170-175 DOI: 10.1097/00004424-198803000-00003.
- 18 Zwirewich CV, Terriff B, Muller NL. High-spatial-frequency (bone) algorithm improves quality of standard CT of the thorax. Am J Roentgenol 1989; 153: 1169-1173 DOI: 10.2214/ajr.153.6.1169.
- 19 Hopper KD, Kasales CJ, Mahraj R. et al. Routine use of a higher order interpolator and bone algorithm in thoracic CT. Am J Roentgenol 1996; 167: 947-949 DOI: 10.2214/ajr.167.4.8819390.
- 20 Swensen SJ, Aughenbaugh GL, Myers JL. Diffuse lung disease: Diagnostic accuracy of CT in patients undergoing surgical biopsy of the lung. Radiology 1997; 205: 229-234 DOI: 10.1148/radiology.205.1.9314990.
- 21 Raghu G, Mageto YN, Lockhart D. et al. The accuracy of the clinical diagnosis of new-onset idiopathic pulmonary fibrosis and other interstitial lung disease: A prospective study. Chest 1999; 116: 1168-1174 DOI: 10.1378/chest.116.5.1168.
- 22 Hunninghake GW, Bridget Zimmerman M, Schwartz DA. et al. Utility of a lung biopsy for the diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2001; 164: 193-196 DOI: 10.1164/ajrccm.164.2.2101090.
- 23 Kondoh Y, Taniguchi H, Kawabata Y. et al. Acute exacerbation in idiopathic pulmonary fibrosis: Analysis of clinical and pathologic findings in three cases. Chest 1993; 103: 1808-1812 DOI: 10.1378/chest.103.6.1808.
- 24 Collard HR, Moore BB, Flaherty KR. et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2007; 176: 636-643 DOI: 10.1164/rccm.200703-463PP.
- 25 Collard HR, Ryerson CJ, Corte TJ. et al. Acute exacerbation of idiopathic pulmonary fibrosis an international working group report. Am J Respir Crit Care Med 2016; 194: 265-275 DOI: 10.1164/rccm.201604-0801CI.
- 26 Sumikawa H, Johkoh T, Ichikado K. et al. Usual interstitial pneumonia and chronic idiopathic interstitial pneumonia: Analysis of CT appearance in 92 patients. Radiology 2006; 241: 258-266 DOI: 10.1148/radiol.2411050928.
- 27 Akira M, Inoue Y, Kitaichi M. et al. Usual interstitial pneumonia and nonspecific interstitial pneumonia with and without concurrent emphysema: Thin-section CT findings. Radiology 2009; 251: 271-279 DOI: 10.1148/radiol.2511080917.
- 28 Walsh SLF, Calandriello L, Sverzellati N. et al. Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT. Thorax 2016; 71: 45-51 DOI: 10.1136/thoraxjnl-2015-207252.
- 29 Watadani T, Sakai F, Johkoh T. et al. Interobserver variability in the CT assessment of honeycombing in the lungs. Radiology 2013; 266: 936-944 DOI: 10.1148/radiol.12112516.
- 30 Siemienowicz ML, Kruger SJ, Goh NSL. et al. Agreement and mortality prediction in high-resolution CT of diffuse fibrotic lung disease. J Med Imaging Radiat Oncol 2015; 59: 555-563 DOI: 10.1111/1754-9485.12314.