Rofo 2023; 195(01): 21-29
DOI: 10.1055/a-1902-9949
Review

Onkologische Bildgebung mittels Spektral-CT

Artikel in mehreren Sprachen: English | deutsch
Julia Sauerbeck
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
,
Gerhard Adam
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
,
Mathias Meyer
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
› Institutsangaben

Zusammenfassung

Hintergrund Die Spektral-CT gewinnt mit vielfältigen Einsatzmöglichen zunehmend an klinischer Bedeutung, so auch im Rahmen der onkologischen Bildgebung. Die Spektral-CT-spezifischen Bilddaten bieten durch verschiedene Nachbearbeitungsalgorithmen vielfältige Vorteile gegenüber konventionellen CT-Bilddaten, was im folgenden Review genauer beleuchtet werden soll.

Methodik Der vorliegende Review-Artikel soll einen Überblick über die potenziell nützlichsten onkologischen Anwendungsgebiete der Spektral-CT geben und auf spezifische Spektral-CT-Fallstricke hinweisen. Hierbei werden sowohl technische Hintergründe als auch klinische Vorteile von onkologischen Primär- und Verlaufsuntersuchungen mittels Spektral-CT beleuchtet und die Anwendung entsprechender Spektral-Tools erläutert.

Ergebnisse/Schlussfolgerungen Die Spektral-CT-Bildgebung bietet vielfältige Vorteile gegenüber der konventionellen CT-Bildgebung, insbesondere auf dem Gebiet der Onkologie. Die Kombination von virtuell nativen und niedrigenergetischen Bildern führt zu einer verbesserten Detektion und Charakterisierung von Tumorläsionen. Jodkarten-Bilder bieten einen potenziellen Imaging-Biomarker zur Beurteilung des Therapieansprechens.

Kernaussagen

  • Die wichtigsten Spektral-CT-Rekonstruktionen für die onkologische Bildgebung sind die virtuell nativen, Jodkarten- und virtuelle monochromatische Rekonstruktionen.

  • Die Kombination aus virtuell nativen und niedrigenergetischen Bildern führt zu einer verbesserten Detektion und Charakterisierung von vaskularisierten und nicht vaskularisierten Läsionen.

  • Jodkarten können ein Surrogatparameter für die Tumorperfusion sein und potenziell als Therapie-Monitoring-Parameter verwendet werden.

  • Für die Strahlentherapie-Planung lassen sich die relative Elektronendichte und die effektive Ordnungszahl eines Gewebes berechnen.

Zitierweise

  • Sauerbeck J, Adam G, Meyer M. Spectral CT in Oncology. Fortschr Röntgenstr 2023; 195: 21 – 29



Publikationsverlauf

Eingereicht: 26. Oktober 2021

Angenommen: 03. Juli 2022

Artikel online veröffentlicht:
27. September 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rajiah P, Parakh A, Kay F. et al. Update on Multienergy CT: Physics, Principles, and Applications. Radiographics 2020; 40: 1284-1308
  • 2 Agrawal MD, Pinho DF, Kulkarni NM. et al. Oncologic applications of dual-energy CT in the abdomen. Radiographics 2014; 34: 589-612
  • 3 Odisio EG, Truong MT, Duran C. et al. Role of Dual-Energy Computed Tomography in Thoracic Oncology. Radiol Clin North Am 2018; 56: 535-548
  • 4 Meyer M, Hohenberger P, Overhoff D. et al. Dual-Energy CT Vital Iodine Tumor Burden for Response Assessment in Patients With Metastatic GIST Undergoing TKI Therapy: Comparison to Standard CT and FDG PET/CT Criteria. Am J Roentgenol 2021;
  • 5 Gordic S, Puippe GD, Krauss B. et al. Correlation between Dual-Energy and Perfusion CT in Patients with Hepatocellular Carcinoma. Radiology 2016; 280: 78-87
  • 6 Krauss B. Dual-Energy Computed Tomography: Technology and Challenges. Radiol Clin North Am 2018; 56: 497-506
  • 7 McCollough CH, Leng S, Yu L. et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015; 276: 637-653
  • 8 Almeida IP, Schyns LE, Ollers MC. et al. Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 2017; 44: 171-179
  • 9 Marin D, Davis D, Roy Choudhury K. et al. Characterization of Small Focal Renal Lesions: Diagnostic Accuracy with Single-Phase Contrast-enhanced Dual-Energy CT with Material Attenuation Analysis Compared with Conventional Attenuation Measurements. Radiology 2017; 284: 737-747
  • 10 Botsikas D, Triponez F, Boudabbous S. et al. Incidental adrenal lesions detected on enhanced abdominal dual-energy CT: can the diagnostic workup be shortened by the implementation of virtual unenhanced images?. Eur J Radiol 2014; 83: 1746-1751
  • 11 Meyer M, Nelson RC, Vernuccio F. et al. Virtual Unenhanced Images at Dual-Energy CT: Influence on Renal Lesion Characterization. Radiology 2019; 291: 381-390
  • 12 Van Hedent S, Hokamp NG, Laukamp KR. et al. Differentiation of Hemorrhage from Iodine Using Spectral Detector CT: A Phantom Study. AJNR Am J Neuroradiol 2018; 39: 2205-2210
  • 13 Slebocki K, Kraus B, Chang DH. et al. Incidental Findings in Abdominal Dual-Energy Computed Tomography: Correlation Between True Noncontrast and Virtual Noncontrast Images Considering Renal and Liver Cysts and Adrenal Masses. J Comput Assist Tomogr 2017; 41: 294-297
  • 14 Fabritius G, Brix G, Nekolla E. et al. Cumulative radiation exposure from imaging procedures and associated lifetime cancer risk for patients with lymphoma. Sci Rep 2016; 6: 35181
  • 15 Kosmala A, Weng AM, Heidemeier A. et al. Multiple Myeloma and Dual-Energy CT: Diagnostic Accuracy of Virtual Noncalcium Technique for Detection of Bone Marrow Infiltration of the Spine and Pelvis. Radiology 2018; 286: 205-213
  • 16 Kosmala A, Weng AM, Krauss B. et al. Dual-energy CT of the bone marrow in multiple myeloma: diagnostic accuracy for quantitative differentiation of infiltration patterns. Eur Radiol 2018; 28: 5083-5090
  • 17 Huang X, Gao S, Ma Y. et al. The optimal monoenergetic spectral image level of coronary computed tomography (CT) angiography on a dual-layer spectral detector CT with half-dose contrast media. Quant Imaging Med Surg 2020; 10: 592-603
  • 18 Grosse Hokamp N, Hoink AJ, Doerner J. et al. Assessment of arterially hyper-enhancing liver lesions using virtual monoenergetic images from spectral detector CT: phantom and patient experience. Abdom Radiol (NY) 2018; 43: 2066-2074
  • 19 Mohammadinejad P, Baffour FI, Adkins MC. et al. Benefits of iterative metal artifact reduction and dual-energy CT towards mitigating artifact in the setting of total shoulder prostheses. Skeletal Radiol 2021; 50: 51-58
  • 20 Eichler M, May M, Wiesmueller M. et al. Single source split filter dual energy: Image quality and liver lesion detection in abdominal CT. Eur J Radiol 2020; 126: 108913
  • 21 DʼAngelo T, Cicero G, Mazziotti S. et al. Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 2019; 92: 20180546
  • 22 Schabel C, Patel B, Harring S. et al. Renal Lesion Characterization with Spectral CT: Determining the Optimal Energy for Virtual Monoenergetic Reconstruction. Radiology 2018; 287: 874-883
  • 23 Noda Y, Tochigi T, Parakh A. et al. Low keV portal venous phase as a surrogate for pancreatic phase in a pancreatic protocol dual-energy CT: feasibility, image quality, and lesion conspicuity. Eur Radiol 2021; 31: 6898-6908
  • 24 Amato C, Klein L, Wehrse E. et al. Potenzial of contrast agents based on high-Z elements for contrast-enhanced photon-counting computed tomography. Med Phys 2020; 47: 6179-6190
  • 25 Konstantinides SV, Meyer G, Becattini C. et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 2020; 41: 543-603
  • 26 Gladish GW, Choe DH, Marom EM. et al. Incidental pulmonary emboli in oncology patients: prevalence, CT evaluation, and natural history. Radiology 2006; 240: 246-255
  • 27 Uhrig M, Simons D, Schlemmer HP. Incidental pulmonary emboli in stage IV melanoma patients: Prevalence in CT staging examinations and improved detection with vessel reconstructions based on dual energy CT. PLoS One 2018; 13: e0199458
  • 28 Patel BN, Rosenberg M, Vernuccio F. et al. Characterization of Small Incidental Indeterminate Hypoattenuating Hepatic Lesions: Added Value of Single-Phase Contrast-Enhanced Dual-Energy CT Material Attenuation Analysis. Am J Roentgenol 2018; 211: 571-579
  • 29 Herts BR, Silverman SG, Hindman NM. et al. Management of the Incidental Renal Mass on CT: A White Paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2018; 15: 264-273
  • 30 Zarzour JG, Milner D, Valentin R. et al. Quantitative iodine content threshold for discrimination of renal cell carcinomas using rapid kV-switching dual-energy CT. Abdom Radiol (NY) 2017; 42: 727-734
  • 31 Meyer M, Nelson RC, Vernuccio F. et al. Comparison of Iodine Quantification and Conventional Attenuation Measurements for Differentiating Small, Truly Enhancing Renal Masses From High-Attenuation Nonenhancing Renal Lesions With Dual-Energy CT. Am J Roentgenol 2019; 213: W26-W37
  • 32 Jacobsen MC, Schellingerhout D, Wood CA. et al. Intermanufacturer Comparison of Dual-Energy CT Iodine Quantification and Monochromatic Attenuation: A Phantom Study. Radiology 2018; 287: 224-234
  • 33 Nagayama Y, Inoue T, Oda S. et al. Adrenal Adenomas versus Metastases: Diagnostic Performance of Dual-Energy Spectral CT Virtual Noncontrast Imaging and Iodine Maps. Radiology 2020; 296: 324-332
  • 34 Albrecht MH, Vogl TJ, Martin SS. et al. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology 2019; 293: 260-271
  • 35 Albrecht MH, Scholtz JE, Kraft J. et al. Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer. Eur Radiol 2015; 25: 2493-2501
  • 36 Husarik DB, Gordic S, Desbiolles L. et al. Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: ex-vivo and patient experience in various body sizes. Invest Radiol 2015; 50: 695-702
  • 37 Kovacs DG, Rechner LA, Appelt AL. et al. Metal artefact reduction for accurate tumour delineation in radiotherapy. Radiother Oncol 2018; 126: 479-486
  • 38 Bar E, Lalonde A, Royle G. et al. The potential of dual-energy CT to reduce proton beam range uncertainties. Med Phys 2017; 44: 2332-2344
  • 39 Kornberg A, Schernhammer M, Friess H. (18)F-FDG-PET for Assessing Biological Viability and Prognosis in Liver Transplant Patients with Hepatocellular Carcinoma. J Clin Transl Hepatol 2017; 5: 224-234
  • 40 Gupta R, Phan CM, Leidecker C. et al. Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 2010; 257: 205-211
  • 41 Apfaltrer P, Meyer M, Meier C. et al. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response?. Invest Radiol 2012; 47: 65-70
  • 42 Reimer RP, Hokamp NG, Niehoff J. et al. Value of spectral detector computed tomography for the early assessment of technique efficacy after microwave ablation of hepatocellular carcinoma. PLoS One 2021; 16: e0252678
  • 43 Bolus D, Morgan D, Berland L. Effective use of the Hounsfield unit in the age of variable energy CT. Abdom Radiol (NY) 2017; 42: 766-771
  • 44 De Cecco CN, Muscogiuri G, Schoepf UJ. et al. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol 2016; 85: 1257-1264
  • 45 Faby S, Kuchenbecker S, Sawall S. et al. Performance of todayʼs dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study. Med Phys 2015; 42: 4349-4366
  • 46 Graser A, Johnson TR, Hecht EM. et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images?. Radiology 2009; 252: 433-440
  • 47 Ho LM, Marin D, Neville AM. et al. Characterization of adrenal nodules with dual-energy CT: can virtual unenhanced attenuation values replace true unenhanced attenuation values?. Am J Roentgenol 2012; 198: 840-845
  • 48 Lee HA, Lee YH, Yoon KH. et al. Comparison of Virtual Unenhanced Images Derived From Dual-Energy CT With True Unenhanced Images in Evaluation of Gallstone Disease. Am J Roentgenol 2016; 206: 74-80
  • 49 Tian SF, Liu AL, Wang HQ. et al. Virtual non-contrast computer tomography (CT) with spectral CT as an alternative to conventional unenhanced CT in the assessment of gastric cancer. Asian Pac J Cancer Prev 2015; 16: 2521-2526
  • 50 Borhani AA, Kulzer M, Iranpour N. et al. Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol (NY) 2017; 42: 710-717
  • 51 Olivia Popnoe D, Ng CS, Zhou S. et al. Comparison of enhancement quantification from virtual unenhanced images to true unenhanced images in multiphase renal Dual-Energy computed tomography: A phantom study. J Appl Clin Med Phys 2019; 20: 171-179
  • 52 Popnoe DO, Ng CS, Zhou S. et al. Comparison of virtual to true unenhanced abdominal computed tomography images acquired using rapid kV-switching dual energy imaging. PLoS One 2020; 15: e0238582
  • 53 Kordbacheh H, Baliyan V, Singh P. et al. Rapid kVp switching dual-energy CT in the assessment of urolithiasis in patients with large body habitus: preliminary observations on image quality and stone characterization. Abdom Radiol (NY) 2019; 44: 1019-1026
  • 54 Xiao JM, Hippe DS, Zecevic M. et al. Virtual Unenhanced Dual-Energy CT Images Obtained with a Multimaterial Decomposition Algorithm: Diagnostic Value for Renal Mass and Urinary Stone Evaluation. Radiology 2021; 298: 611-619