Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50(04): 258-264
DOI: 10.1055/a-1903-0851
Übersichtsartikel

Trypsin-Inhibitor-Aktivität im Kolostrum – eine Übersicht

Trypsin-inhibitor activity in colostrum – an overview
Lukas Trzebiatowski
1   Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere, Justus-Liebig-Universität, Gießen
,
Plamen Georgiev
2   Department of Obstetrics, Reproduction and Reproductive Disorders, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
,
Axel Wehrend
1   Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere, Justus-Liebig-Universität, Gießen
› Author Affiliations

Zusammenfassung

Die wichtige Rolle von Kolostrum für das Immunsystem des Neonaten ist lange bekannt. Proteine und vor allem Immunglobuline müssen nach der Aufnahme den Verdauungstrakt mit seinen proteolytischen Enzymen intakt passieren, um in den neonatalen Kreislauf aufgenommen werden zu können. Aus diesem Grund weist Kolostrum eine trypsininhibitorische Aktivität auf. Die Anti-Trypsin-Aktivität wird dabei nicht nur von einem einzigen Molekül getragen, sondern ist eine generelle Eigenschaft des Erstkolostrums. Bei Paarhufern lässt sich eine hohe Trypsin-Inhibition nachweisen, die in den ersten Tagen der Laktation stark abfällt. Auch beim Pferd ist eine Trypsin-Inhibition im Kolostrum festzustellen. Die Bedeutung wird in der Literatur kontrovers diskutiert, weil die Anti-Trypsin-Aktivität im Vergleich zu den Klauentieren geringer ausgeprägt ist und weniger Stabilität im sauren Milieu zeigt. Im Kolostrum von Fleischfressern findet sich ebenfalls eine Anti-Trypsin-Aktivität, die jedoch weniger stark ausgeprägt ist als bei den Huftieren. Diese Literaturübersicht hat zum Ziel, das bekannte Wissen zur Anti-Trypsin-Aktivität im Kolostrum verschiedener Spezies zusammenzufassen.

Abstract

The crucial role of colostrum for the neonatal immune system is well recognized. Following ingestion, proteins and especially immunoglobulins must pass the gastrointestinal tract and its proteolytic enzymes intact in order to be absorbed into the neonatal blood circulation. For this reason colostrum exhibits trypsin-inhibitor activity. This activity is not exerted by a single molecule but represents a general characteristic of the first colostrum. In artiodactyl species, high-level trypsin inhibition has been demonstrated along with a rapid decrease during the first days of lactation. In equine colostrum, trypsin-inhibitor activity has also been detected. Its importance is however controversially discussed in the literature due to the fact that the anti-trypsin activity is less pronounced in comparison to artiodactyl species and exhibits reduced stability in acidic environment. In the colostrum of carnivores, anti-trypsin activity has also been proven, this however is less prominent than in ungulates. The presented overview of the literature aims at summarizing the current understanding of trypsin inhibition in the colostrum of different species.



Publication History

Received: 24 November 2021

Accepted: 10 March 2022

Article published online:
06 September 2022

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Brambell FW. The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet 1966; 2 (7473) 1087-1093
  • 2 Baintner K. Transmission of antibodies from mother to young: Evolutionary strategies in a proteolytic environment. Vet Immunol Immunopathol 2007; 117 (03/04) 153-161
  • 3 Guilloteau P, Zabielski R, Blum JW. Gastrointestinal tract and digestion in the young ruminant: ontogenesis, adaptations, consequences and manipulations. J Physiol Pharmacol 2009; 60 (Suppl. 03) 37-46
  • 4 Laskowski Jr M, Laskowski M. Crystalline trypsin inhibitor from colostrum. J Biol Chem 1951; 190: 563-573
  • 5 Kessler EC, Bruckmaier RM, Gross JJ. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J Anim Sci 2020; 98 (08) skaa237 DOI: 10.1093/jas/skaa237.
  • 6 Schneider F, Wehrend A. Qualitätsbeurteilung von bovinem und equinem Kolostrum–Eine Übersicht. Schweiz Arch Tierheilkd 2019; 161 (05) 287-297
  • 7 Kehoe SI, Jayarao BM, Heinrichs AJ. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci 2007; 90 (09) 4108-4116
  • 8 Blum JW. Nutritional physiology of neonatal calves. J Anim Physiol Anim Nutr (Berl) 2006; 90 (01/02) 1-11
  • 9 Demattio L, Wehrend A. Vorkommen und Bedeutung von Leukozyten im Kolostrum. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48 (01) 35-44
  • 10 Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem 1977; 46: 331-358
  • 11 Brock JH, Piñeiro A, Lampreave F. The effect of trypsin and chymotrypsin on the antibacterial activity of complement, antibodies, and lactoferrin and transferrin in bovine colostrum. Ann Rech Vet 1978; 9 (02) 287-294
  • 12 Huber JT, Jacobson NL, Allen RS. et al. Digestive Enzyme Activities in the Young Calf. J Dairy Sci 1961; 44 (08) 1494-1501
  • 13 Guilloteau P, Corring T, Toullec R. et al. Enzyme potentialities of the abomasum and pancreas of the calf. I.--Effect of age in the preruminant. Reprod Nutr Dev 1984; 24 (03) 315-325
  • 14 Miyashige T, Yahata S. Development of Intestinal Disaccharidase Activities in Nursing Calves. Jpn J Zootech Sci 1980; 51 (01) 58-68
  • 15 Baumrucker CR, Bruckmaier RM. Colostrogenesis: IgG1 transcytosis mechanisms. J Mammary Gland Biol Neoplasia 2014; 19 (01) 103-117
  • 16 Mayer B, Zolnai A, Frenyó LV. et al. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology 2002; 107 (03) 288-296
  • 17 Baintner K, Kocsis G. Occurrence and some characteristics of the IgG receptors of the small intestinal mucosa: in vitro experiments. Acta Vet Acad Sci Hung 1984; 32 (03/04) 181-186
  • 18 Baintner K. Demonstration of acidity in intestinal vacuoles of the suckling rat and pig. J Histochem Cytochem 1994; 42 (02) 231-238
  • 19 Weström BR, Ohlsson BG, Svendsen J. et al. Intestinal transmission of macromolecules (BSA and FITC-dextran) in the neonatal pig: enhancing effect of colostrum, proteins and proteinase inhibitors. Biol Neonate 1985; 47 (06) 359-366
  • 20 Clarke RM, Hardy RN. Histological changes in the small intestine of the young pig and their relation to macromolecular uptake. J Anat 1971; 108 (Pt 1) 63-77
  • 21 Baintner K. Occurrence of trypsin inhibitors in colostrum, meconium, and faeces of different species of ungulates and carnivores. Acta Vet Acad Sci Hung 1984; 32 (01/02) 91-95
  • 22 Baintner K. The physiological role of colostral trypsin inhibitor: experiments with piglets and kittens. Acta Vet Acad Sci Hung 1973; 23 (03) 247-260
  • 23 Saikku A, Koskinen E, Sandholm M. Sequential changes of IgG and antitrypsin in different compartments during the colostral-intestinal transfusion of immunity to the newborn foal. Zentralbl Veterinarmed B 1989; 36 (05) 391-396
  • 24 Baintner K. Urinary excretion of colostral trypsin inhibitor in neonatal pigs. Life Sci II 1970; 9 (15) 847-849
  • 25 Smith T, Little RB. Proteinuria in new-born calves following the feeding of colostrum. J Gen Physiol 1924; 39 (02) 303-312
  • 26 Erlanger BF, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 1961; 95: 271-278
  • 27 Sandholm M, Honkanen-Buzalski T. Colostral trypsin-inhibitor capacity in different animal species. Acta Vet Scand 1979; 20 (04) 469-476
  • 28 Pedersen VB, Keil-Dlouhá V, Keil B. On the properties of trypsin inhibitors from human and bovine colostrum. FEBS Lett 1971; 17 (01) 23-26
  • 29 Chucri TM, Monteiro JM, Lima AR. et al. A review of immune transfer by the placenta. J Reprod Immunol 2010; 87 (01/02) 14-20
  • 30 Bender P, Bostedt H. Determination of IgG and IgM levels in sera of newborn calves until the 10th day of life by ELISA and description of their correlation to total plasma protein concentration and GGT activity. Dtsch Tierarztl Wochenschr 2009; 116 (02) 44-52
  • 31 Piñeiro A, Brock JH, Esparza I. Isolation and properties of bovine colostral trypsin inhibitor. Ann Rech Vet 1978; 9 (02) 281-286
  • 32 von Fellenberg R, Horber H. Multiple Proteaseinhibitoren im Kolostrum und im Eutergewebe der Kuh und ihre mögliche funktionelle Bedeutung. Schweiz Arch Tierheilkd 1980; 122 (03) 159-168
  • 33 Honkanen-Buzalski T, Sandholm M. Trypsin-inhibitors in mastitic milk and colostrum: correlation between trypsin-inhibitor capacity, bovine serum albumin and somatic cell contents. J Dairy Res 1981; 48 (02) 213-223
  • 34 Quigley JD, Martin KR, Dowlen HH. Concentrations of trypsin inhibitor and immunoglobulins in colostrum of Jersey cows. J Dairy Sci 1995; 78 (07) 1573-1577
  • 35 Sroka K, Krowarsch D, Szulc T. The effect of incomplete colostrum milking on its content and on trypsin inhibitor level. Series Animal Husbandry. Electronic Journal of Polish Agricultural Universities (EJPAU) 1998 www.ejpau.media.pl/volume1/issue1/animal/art-01.html
  • 36 Soares Filho PM, Belém PAD, Ribeiro Júnior JI. et al. Colostral immunoglobulin G concentrations in crossbred holstein-zebu dairy cows. Cienc. Rural 2001; 31 (06) 1033-1037
  • 37 Zhang L, Boeren S, Hageman JA. et al. Bovine milk proteome in the first 9 days: protein interactions in maturation of the immune and digestive system of the newborn. PLoS One 2015; 10 (02) e0116710
  • 38 Wang XX, Han RW, Zhao XW. et al. Label-free quantitative proteomics analysis reveals the fate of colostrum proteins in the intestine of neonatal calves. J Dairy Sci 2020; 103 (11) 10823-10834
  • 39 Yang Y, Zheng N, Zhao X. et al. Changes in whey proteome with lactation stage and parity in dairy cows using a label-free proteomics approach. Food Res Int 2020; 128: 108760
  • 40 Piotte CP, Grigor MR. A novel marsupial protein expressed by the mammary gland only during the early lactation and related to the Kunitz proteinase inhibitors. Arch Biochem Biophys 1996; 330 (01) 59-64
  • 41 Pharo EA, Leo AA de, Renfree MB. et al. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene. BMC Evol Biol 2012; 12: 80
  • 42 Tagliazucchi D, Martini S, Shamsia S. et al. Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk. International Dairy Journal 2018; 81: 19-27
  • 43 Zheng L, Xu Q, Lin L. et al. In Vitro Metabolic Stability of a Casein-Derived Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptide VPYPQ and Its Controlled Release from Casein by Enzymatic Hydrolysis. J Agric Food Chem 2019; 67 (38) 10604-10613
  • 44 Baintner K. The physiological role of colostral trypsin inhibitor. II. Experiments with lambs. Acta Vet Acad Sci Hung 1976; 26 (04) 405-413
  • 45 Laskowski M, Kassell B, Hagerty G. A crystalline trypsin inhibitor from swine colostrum. Biochim Biophys Acta 1957; 24 (02) 300-305
  • 46 Jensen PT, Pedersen KB. Studies on immunoglobulins and trypsin inhibitor in colostrum and milk from sows and in serum of their piglets. Acta Vet Scand 1979; 20 (01) 60-72
  • 47 Jensen PT. Trypsin inhibitor in sow colostrum and its function. Ann Rech Vet 1978; 9 (02) 225-228
  • 48 Baintner K, Csapó J. Lack of acid-resistant trypsin inhibitor in mare’s colostrum: short communication. Acta Vet Acad Sci Hung 1996; 44 (01) 95-97
  • 49 Pereira M, Valério-Bolas A, Saraiva-Marques C. et al. Development of Dog Immune System: From in Uterus to Elderly. Vet Sci 2019; 6 (04) 83 DOI: 10.3390/vetsci6040083.
  • 50 Pharo EA, Cane KN, McCoey J. et al. A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation. Gene 2016; 578 (01) 7-16