Subscribe to RSS
DOI: 10.1055/a-1904-0152
Benign-Metal-Catalyzed Carbon–Carbon and Carbon–Heteroatom Bond Formation
B.C.R. gratefully acknowledges the support of Indian National Science Academy, New Delhi, with their offer to him of the position of INSA Honorary Scientist (Grant no. SP/HS/2019/291). L.A. thanks SERB, DST, Government of India (Project: SRG/2020/001350) and WBDST-BT [Memo No: 1854(Sanc.)/ST/P/S&T/15G-7/2019] for financial support. T.G. thanks UGC-DSKPDF [UGC Award Letter No. F.4-2/2006(BSR)/CH/19-20/0088; Jan 24th, 2020] for his postdoctoral fellowship.
![](https://www.thieme-connect.de/media/synlett/202306/lookinside/thumbnails/st-2022-b0234-ca_10-1055_a-1904-0152-1.jpg)
Abstract
Carbon–carbon and carbon–heteroatom bond-formation reactions catalyzed by benign and inexpensive metals are of much interest in organic synthesis, as these reactions provide green and cost-effective routes. This account summarizes our recent contributions to the construction of carbon–carbon and carbon–heteroatom bonds by using benign-metal catalysts. A number of carbon–heteroatom bond formations, including C–N, C–O, C–S, C–Se, C–Te, and C–P bond formations, are discussed. Mechanistic insights into several reactions are also reported
1 Introduction
2 C–C Bond Formation
3 C–N and C–O Bond Formation
4 Carbon–Chalcogen (C–S, C–Se, C–Te) and C–P Bond Formation
5 Conclusions
Key words
catalysis - benign metals - carbon–carbon bond formation - carbon–heteroatom bond formation - cross-coupling - green chemistryPublication History
Received: 27 May 2022
Accepted after revision: 19 July 2022
Accepted Manuscript online:
19 July 2022
Article published online:
23 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Carbon–Carbon Bond Formation: Techniques and Applications in Organic Synthesis. Augustine RL. Marcel Dekker; New York: 1979
- 1b Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 1c Green-Bond Forming Reactions, Vol. 1: Carbon–Carbon and Carbon–Heteroatom. Sharma RK, Banerjee B. de Gruyter; Berlin: 2022
- 1d Catalyzed Carbon–Heteroatom Bond Formation. Yudin AK. Wiley-VCH; Weinheim: 2011
- 2a Noble Metal Noble Value: Ru-, Rh-, Pd-Catalyzed Heterocycle Synthesis. Wu X.-F. Imperial College Press; London: 2016
- 2b Palladium(0)-Catalyzed Cross-Coupling and Cyclocondensations Reactions. Dang TT. VDM Verlag Dr. Müller; Riga: 2011
- 2c Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
- 2d Naota T, Takaya H, Murahashi S.-I. Chem. Rev. 1998; 98: 2599
- 2e Duarah G, Kaishap PP, Begum T, Gogoi S. Adv. Synth. Catal. 2019; 361: 654
- 2f Modern Rhodium-Catalyzed Organic Reactions. Evans PA. Wiley-VCH; Weinheim: 2005
- 2g Tosatti P, Nelson A, Marsden SP. Org. Biomol. Chem. 2012; 3147
- 2h Labinger JA. Chem. Rev. 2017; 117: 8483
- 3a Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
- 3b Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
- 3c Adak L, Hatakeyama T, Nakamura M. Bull. Chem. Soc. Jpn. 2021; 94: 1125
- 3d Cobalt Catalysis in Organic Synthesis: Methods and Reactions. Hapke M, Hilt G. Wiley-VCH; Weinheim: 2019
- 3e Baccalini A, Vergura S, Dolui P, Giuseppe Z, Maiti D. Org. Biomol. Chem. 2019; 10119
- 3f Usman M, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Synthesis 2017; 49: 1419
- 3g Ananikov VP. ACS Catal. 2015; 5: 1964
- 3h Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley-VCH; Weinheim: 2020
- 3i Satpute DP, Vaidya GN, Lokhande SK, Shinde SD, Bhujbal SM, Chaterjee DR, Rana P, Venkatesh A, Nagpure M, Kumar D. Green Chem. 2021; 23: 6273
- 3j Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
- 3k Aneeja T, Neetha M, Afsina CM. A, Anilkumar G. RSC Adv. 2020; 34429
- 3l Copper Catalysis in Organic Synthesis. Anilkumar G., Saranya S. Wiley-VCH; Weinheim: 2020
- 4a Nair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
- 4b Li C.-J. Can. J. Chem. 2022; 100: 98
- 5 Saha D, Chatterjee T, Mukherjee M, Ranu BC. J. Org. Chem. 2012; 77: 9379
- 6 Ahammed S, Kundu D, Ranu BC. J. Org. Chem. 2014; 79: 7391
- 7 Mukherjee N, Kundu D, Ranu BC. Chem. Commun. 2014; 50: 15784
- 8 Maity P, Kundu D, Ghosh T, Ranu BC. Org. Chem. Front. 2018; 5: 1586
- 9a Sekiya A, Ishikawa N. Chem. Lett. 1975; 277
- 9b Takagi K, Okamoto T, Sakakibara Y, Ohno A, Oka S, Hayama N. Bull. Chem. Soc. Jpn. 1976; 49: 3177
- 9c Sundermeier M, Zapf A, Mutyala S, Baumann W, Sans J, Weiss S, Beller M. Chem. Eur. J. 2003; 9: 1828
- 9d Sundermeier M, Zapf A, Beller M. Angew. Chem. Int. Ed. 2003; 42: 1661
- 9e Marcantonio KM, Frey LF, Liu Y, Chen Y, Strine J, Phenix B, Wallace DJ, Chen C.-y. Org. Lett. 2004; 6: 3723
- 9f Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
- 10a Sundermeier M, Zapf A, Beller M, Sans J. Tetrahedron Lett. 2001; 42: 6707
- 10b Schareina T, Zapf A, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2011; 353: 777
- 10c Reeves JT, Malapit CA, Buono FG, Sidhu KP, Marsini MA, Sader CA, Fandrick KR, Busacca CA, Senanayake CH. J. Am. Chem. Soc. 2015; 137: 9481
- 10d Park EJ, Lee S, Chang S. J. Org. Chem. 2010; 75: 2760
- 10e Luo F.-H, Chu C.-I, Cheng C.-H. Organometallics 1998; 17: 1025
- 10f Jiang Z, Huang Q, Chen S, Long L, Zhou X. Adv. Synth. Catal. 2012; 354: 589
- 10g Zhang Z, Liebeskind LS. Org. Lett. 2006; 8: 4331
- 10h Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
- 10i Yang Y, Zhang Y, Wang J. Org. Lett. 2011; 13: 5608
- 11 Ghosh T, Maity P, Ranu BC. Org. Lett. 2018; 20: 1011
- 12 Qiao H, Sun S, Yang F, Zhu Y, Zhu W, Dong Y, Wu Y, Kong X, Jiang L, Wu Y. Org. Lett. 2015; 17: 6086
- 13 Ghosh T, Maity P, Ranu BC. J. Org. Chem. 2018; 83: 11758
- 14 Kundu D, Tripathy M, Maity P, Ranu BC. Chem. Eur. J. 2015; 21: 8727
- 15 Kundu D, Maity P, Ranu BC. Org. Lett. 2014; 16: 1040
- 16 Maity P, Kundu D, Ranu BC. Adv. Synth. Catal. 2015; 357: 3617
- 17 Mukherjee N, Chatterjee T, Ranu BC. Eur. J. Org. Chem. 2015; 4018
- 18 Ghosh T, Maity P, Ranu BC. ChemistrySelect 2018; 3: 4406
- 19 Kundu D, Bhadra S, Mukherjee N, Sreedhar B, Ranu BC. Chem. Eur. J. 2013; 19: 15759
- 20 Mugesh G, du Mont W.-W, Sies H. Chem. Rev. 2001; 101: 2125
- 21 Stuhr-Hansen N, Beckers EH. A, Engman L, Jansen RA. O. Heteroat. Chem. 2005; 16: 656
- 22 Okamoto Y. In The Chemistry of Organic Selenium and Tellurium Compounds, Vol. 1. Patai S., Rappoport Z., Wiley; Chichester: 1986: 331
- 23a Paulmier C. Selenium Reagents and Intermediates in Organic Synthesis. Pergamon; Oxford: 1986
- 23b Petragnani N. Tellurium in Organic Synthesis. Academic Press; London: 1994
- 24 Kundu D, Chatterjee T, Ranu BC. Adv. Synth. Catal. 2013; 355: 2285
- 25a Swapna K, Murthy SN, Jyothi MT, Nageswar YV. D. Org. Biomol. Chem. 2011; 9: 5989
- 25b Panda N, Jena AK, Mohapatra S. Appl. Catal., A 2012; 433: 258
- 25c Zhang R, Liu J, Wang S, Niu I, Xia P, Sun W. ChemCatChem 2011; 3: 146
- 25d Kundu D, Mukherjee N, Ranu BC. RSC Adv. 2013; 3: 117
- 26 Chatterjee T, Ranu BC. J. Org. Chem. 2013; 78: 7145
- 27 Maity P, Kundu D, Roy R, Ranu BC. Org. Lett. 2014; 16: 4122
- 28 Mukherjee N, Kundu D, Ranu BC. Adv. Synth. Catal. 2017; 359: 329
- 29 Panja S, Maity P, Kundu D, Ranu BC. Tetrahedron Lett. 2017; 58: 3441
- 30 Ahammed S, Bhadra S, Kundu D, Sreedhar B, Ranu BC. Tetrahedron 2012; 68: 10542
- 31 Maity P, Ahammed S, Manna RN, Ranu BC. Org. Chem. Front. 2017; 4: 69
- 32 Ghosh T, Maity P, Kundu D, Ranu BC. New J. Chem. 2016; 40: 9556