Subscribe to RSS
DOI: 10.1055/a-1904-8551
Osteosynthese bei proximalen Femurfrakturen – Wie entscheidend sind Reposition und die Wahl des Implantats?
Article in several languages: deutsch | EnglishZusammenfassung
Proximale Femurfrakturen sind häufige und gleichsam komplexe Verletzungen, die einer zeitnahen Versorgung bedürfen. Ziel der operativen Therapie ist stets die rasche Wiederherstellung einer schmerzfreien und belastungsstabilen Extremität. Betroffen sind meist ältere, multimorbide Patienten mit einer hohen postoperativen Komplikations- und Mortalitätsrate. Bei gleichzeitig steigender Inzidenz besteht eine hohe medizinische und volkswirtschaftliche Relevanz der Thematik. In dieser Arbeit soll anhand der aktuellen Literatur die Reposition und Implantatwahl bei der Osteosynthese von proximalen Femurfrakturen in Abhängigkeit von der Frakturmorphologie untersucht werden. Zur Standardversorgung gehören neben der Schraubenosteosynthese (SO) die Versorgung mit einer Dynamischen Hüftschraube (DHS) und die intramedulläre Nagelosteosynthese (IN). Des Weiteren wird der Einfluss der Implantatpositionierung, Frakturreposition und additiver Maßnahmen wie einer Zementaugmentation auf das Ergebnis bewertet und diskutiert. Vorrangig für die Vermeidung von Komplikationen sind eine sorgsame Frakturreposition und die regelhafte Implantatpositionierung.
Schlüsselwörter
proximale Femurfrakturen - hüftgelenksnahe Frakturen - intramedulläre Osteosynthese - dynamische Hüftschraube - pertrochantäre FrakturPublication History
Received: 16 December 2021
Accepted after revision: 13 July 2022
Article published online:
27 September 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Ireland AW, Kelly PJ, Cumming RG. Total hospital stay for hip fracture: measuring the variations due to pre-fracture residence, rehabilitation, complications and comorbidities. BMC Health Serv Res 2015; 15: 17
- 2 Haughom BD, Basques BA, Hellman MD. et al. Do Mortality and Complication Rates Differ Between Periprosthetic and Native Hip Fractures?. J Arthroplasty 2018; 33: 1914-1918
- 3 Sathiyakumar V, Greenberg SE, Molina CS. et al. Hip fractures are risky business: an analysis of the NSQIP data. Injury 2015; 46: 703-708
- 4 Ehlinger M, Favreau H, Eichler D. et al. Early mechanical complications following fixation of proximal femur fractures: From prevention to treatment. Orthop Traumatol Surg Res 2020; 106(1S): S79-S87
- 5 Korbmacher JG, Schulze-Raestrup U, Nowak H. et al. Osteosynthetic treatment of proximal femoral fractures: the timing of treatment is delayed in cases of pre-existing anticoagulation : Results of the data of external inpatient quality assurance from North Rhine-Westphalia with 24,786 cases within the framework of using secondary data. Unfallchirurg 2021; 124: 642-650
- 6 Socci AR, Casemyr NE, Leslie MP. et al. Implant options for the treatment of intertrochanteric fractures of the hip: rationale, evidence, and recommendations. Bone Joint J 2017; 99-B: 128-133
- 7 Gemeinsamer Bundesausschuss. Beschluss des Gemeinsamen Bundesausschusses über eine Richtlinie zur Versorgung der hüftgelenknahen Femurfraktur. 2019–11–22_2020–03–27_2020–04–16_2020–11–20_QSFFx-RL_Erstfassung_konsolidiert_BAnz.pdf.
- 8 Weißbuch Alterstraumatologie. Liener UC, Becker C, Rapp K. Accessed January 03, 2022 at: https://alt.dgu-online.de/fileadmin/published_content/5.Qualitaet_und_Sicherheit/Alterstraumatologie/Weissbuch_Alterstraumatologie_2018.pdf
- 9 Anglen JO, Weinstein JN. American Board of Orthopaedic Surgery Research Committee. Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Joint Surg Am 2008; 90: 700-707
- 10 Florschutz AV, Langford JR, Haidukewych GJ. et al. Femoral Neck Fractures: Current Management. J Orthop Trauma 2015; 29: 121-129
- 11 Zlowodzki MP, Wijdicks CA, Armitage BM. et al. Value of washers in internal fixation of femoral neck fractures with cancellous screws: a biomechanical evaluation. J Orthop Trauma 2015; 29: e69-e72
- 12 Filipov O, Gueorguiev B. Unique stability of femoral neck fractures treated with the novel biplane double-supported screw fixation method: a biomechanical cadaver study. Injury 2015; 46: 218-226
- 13 Knobe M, Altgassen S, Maier K-J. et al. Screw-blade fixation systems in Pauwels three femoral neck fractures: a biomechanical evaluation. Int Orthop 2018; 42: 409-418
- 14 Buckley RE, Moran CG, Apivatthakakul T. AO Principles of Fracture Management. 3rd ed. Stuttgart: Thieme; 2017
- 15 Li L, Zhao X, Yang X. et al. Dynamic hip screws versus cannulated screws for femoral neck fractures: a systematic review and meta-analysis. J Orthop Surg Res 2020; 15: 352
- 16 Shehata MSA, Aboelnas MM, Abdulkarim AN. et al. Sliding hip screws versus cancellous screws for femoral neck fractures: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol 2019; 29: 1383-1393
- 17 Stoffel K, Zderic I, Gras F. et al. Biomechanical Evaluation of the Femoral Neck System in Unstable Pauwels III Femoral Neck Fractures: A Comparison with the Dynamic Hip Screw and Cannulated Screws. J Orthop Trauma 2017; 31: 131-137
- 18 Parker MJ. Sliding hip screw versus intramedullary nail for trochanteric hip fractures; a randomised trial of 1000 patients with presentation of results related to fracture stability. Injury 2017; 48: 2762-2767
- 19 Santoni BG, Diaz MA, Stoops TK. et al. Biomechanical Investigation of an Integrated 2-Screw Cephalomedullary Nail Versus a Sliding Hip Screw in Unstable Intertrochanteric Fractures. J Orthop Trauma 2019; 33: 82-87
- 20 Li A-B, Zhang W-J, Wang J. et al. Intramedullary and extramedullary fixations for the treatment of unstable femoral intertrochanteric fractures: a meta-analysis of prospective randomized controlled trials. Int Orthop 2017; 41: 403-413
- 21 Yu X, Wang H, Duan X. et al. Intramedullary versus extramedullary internal fixation for unstable intertrochanteric fracture, a meta-analysis. Acta Orthop Traumatol Turc 2018; 52: 299-307
- 22 Ma K-L, Wang X, Luan F-J. et al. Proximal femoral nails antirotation, Gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: A meta-analysis. Orthop Traumatol Surg Res 2014; 100: 859-866
- 23 Al-Munajjed AA, Hammer J, Mayr E. et al. Biomechanical characterisation of osteosyntheses for proximal femur fractures: helical blade versus screw. Stud Health Technol Inform 2008; 133: 1-10
- 24 Windolf M, Braunstein V, Dutoit C. et al. Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech (Bristol, Avon) 2009; 24: 59-64
- 25 Lindvall E, Ghaffar S, Martirosian A. et al. Short Versus Long Intramedullary Nails in the Treatment of Pertrochanteric Hip Fractures: Incidence of Ipsilateral Fractures and Costs Associated With Each Implant. J Orthop Trauma 2016; 30: 119-124
- 26 Zhang Y, Zhang S, Wang S. et al. Long and short intramedullary nails for fixation of intertrochanteric femur fractures (OTA 31-A1, A2 and A3): A systematic review and meta-analysis. Orthop Traumatol Surg Res 2017; 103: 685-690
- 27 Kane P, Vopat B, Heard W. et al. Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement. Clin Orthop Relat Res 2014; 472: 2492-2498
- 28 Lee C-H, Su K-C, Chen K-H. et al. Impact of tip–apex distance and femoral head lag screw position on treatment outcomes of unstable intertrochanteric fractures using cephalomedullary nails. J Int Med Res 2018; 46: 2128-2140
- 29 Joglekar SB, Lindvall EM, Martirosian A. Contemporary management of subtrochanteric fractures. Orthop Clin North Am 2015; 46: 21-35
- 30 Kasha S, Yalamanchili RK. Management of subtrochanteric fractures by nail osteosynthesis: a review of tips and tricks. Int Orthop 2020; 44: 645-653
- 31 Neuerburg C, Gosch M, Blauth M. et al. Augmentation techniques on the proximal femur. Unfallchirurg 2015; 118: 755-764
- 32 Fensky F, Nüchtern JV, Kolb JP. et al. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures--a biomechanical cadaver study. Injury 2013; 44: 802-807
- 33 Sermon A, Boner V, Schwieger K. et al. Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech (Bristol, Avon) 2012; 27: 71-76
- 34 Schuetze K, Ehinger S, Eickhoff A. et al. Cement augmentation of the proximal femur nail antirotation: is it safe. Arch Orthop Trauma Surg 2020;
- 35 Kammerlander C, Doshi H, Gebhard F. et al. Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 2014; 134: 343-349
- 36 Kammerlander C, Hem ES, Klopfer T. et al. Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA) – A multicentre randomized controlled trial. Injury 2018; 49: 1436-1444
- 37 Stramazzo L, Ratano S, Monachino F. et al. Cement augmentation for trochanteric fracture in elderly: A systematic review. J Clin Orthop Trauma 2021; 15: 65-70
- 38 Keppler AM, Pfeufer D, Kau F. et al. Cement augmentation of the Proximal Femur Nail Antirotation (PFNA) is associated with enhanced weight-bearing in older adults. Injury 2021; 52: 3042-3046
- 39 Falkensammer ML, Benninger E, Meier C. Reduction Techniques for Trochantericand Subtrochanteric Fractures of the Femur: a Practical Guide. Acta Chir Orthop Traumatol Cech 2016; 83: 300-310
- 40 Marmor M, Liddle K, Buckley J. et al. Effect of varus and valgus alignment on implant loading after proximal femur fracture fixation. Eur J Orthop Surg Traumatol 2016; 26: 379-383
- 41 Wang Y, Ma J-X, Yin T. et al. Correlation Between Reduction Quality of Femoral Neck Fracture and Femoral Head Necrosis Based on Biomechanics. Orthop Surg 2019; 11: 318-324
- 42 Ostrum RF, Marcantonio A, Marburger R. A critical analysis of the eccentric starting point for trochanteric intramedullary femoral nailing. J Orthop Trauma 2005; 19: 681-686
- 43 Baumgaertner MR, Curtin SL, Lindskog DM. et al. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. : The Journal of Bone & Joint Surgery 1995; 77: 1058-1064
- 44 Mallya S, Kamath SU, Madegowda A. et al. Comparison of radiological and functional outcome of unstable intertrochanteric femur fractures treated using PFN and PFNA-2 in patients with osteoporosis. Eur J Orthop Surg Traumatol 2019; 29: 1035-1042
- 45 Kuzyk PRT, Zdero R, Shah S. et al. Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis. J Orthop Trauma 2012; 26: 414-421
- 46 Lakstein D, Bachar I, Debi R. et al. Radiographic templating of total hip arthroplasty for femoral neck fractures. Int Orthop 2017; 41: 831-836
- 47 Jiménez-Delgado JJ, Paulano-Godino F, PulidoRam-Ramírez R. et al. Computer assisted preoperative planning of bone fracture reduction: Simulation techniques and new trends. Med Image Anal 2016; 30: 30-45
- 48 Okada T, Iwasaki Y, Koyama T. et al. Computer-Assisted Preoperative Planning for Reduction of Proximal Femoral Fracture Using 3-D-CT Data. IEEE Trans Biomed Eng 2009; 56: 749-759
- 49 Krischak G, Beck A, Wachter N. et al. Relevance of primary reduction for the clinical outcome of femoral neck fractures treated with cancellous screws. Arch Orthop Trauma Surg 2003; 123: 404-409
- 50 Yoon RS, Donegan DJ, Liporace FA. Reducing subtrochanteric femur fractures: tips and tricks, do’s and don’ts. J Orthop Trauma 2015; 29 (04) S28-S33