Osteologie 2022; 31(03): 153-161
DOI: 10.1055/a-1910-3123
Review

Skelettale Auswirkungen bariatrischer Chirurgie

Skeletal Effects of Bariatric Surgery
Uwe Maus
1   Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
,
Katharina Schultz
1   Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
,
Christian Vay
2   Klinik für Allgemein – und Viszeralchirurgie, Uniklinik Düsseldorf, Düsseldorf, Germany
› Institutsangaben

Zusammenfassung

Bei zunehmender Prävalenz der Adipositas sind in Deutschland ca. 54% der Bevölkerung übergewichtig oder adipös, wobei mit steigendem Übergewicht das Risiko für weitere Erkrankungen, wie z. B. Diabetes mellitus Typ 2, Herzinsuffizienz, arterielle Hypertonie u. a. stark ansteigt. Die Reduktion des Körpergewichtes ist daher aus verschiedenen Gesichtspunkten anzustreben. Viele Patientinnen und Patienten mit Adipositas haben bereits vor einer möglichen Operation einen Mangel an Vitamin D und Calcium und zeigen in Laboruntersuchungen entsprechende Defizite. Die konservative Behandlung der Adipositas aus Ernährungs-, Bewegung- und Verhaltenstherapie bildet die Basis der möglichen Therapiemaßnahmen. Bei Versagen der konservativen Behandlungsoptionen ergibt sich ab einem Body-Mass-Index (BMI) von über 40 kg/m2 die Indikation zur operativen Therapie, ab einem BMI von 50 kg/m2 besteht unter bestimmten Voraussetzungen die primäre Indikation zur Durchführung einer bariatrisch-chirurgischen Maßnahme. Zu den in Deutschland am häufigsten empfohlenen operativen Verfahren, die in der Regel laparoskopisch durchgeführt werden, gehören weiterhin die Implantation eines Magenbands, die Bildung eines Magenschlauchs (Gastric-sleeve-Resektion), die Anlage eines proximalen Roux-en-Y-Magenbypass oder eines Omega-loop-Magenbypass. Neben der angestrebten Reduktion des Übergewichtes durch ihre restriktiven wie malabsorptiven Wirkungen führen diese OP-Methoden in unterschiedlichem Ausmaß zu Veränderungen des Kalzium-Stoffwechsels u. a. mit Hypocalcämie, Vitamin-D-Defizit und Erhöhung des Serum-Parathormons, was in einem erhöhten Frakturrisiko, Veränderungen der Knochendichte und der Mikroarchitektur des Knochens münden kann. In der Nachsorge nach bariatrischen Operationen sind daher eine ausreichende Supplementierung verschiedener Vitamine, Mineralien und Spurenelemente, die regelmäßige Kontrolle der Laborparameter und der Knochendichte sowie ein angepasstes körperliches Training wichtig. Aus osteologischer Sicht kommt bei diagnostizierter Osteoporose insbesondere eine intravenöse antiresorptive Therapie in Betracht.

Abstract

The prevalence of obesity is increasing. In Germany, about 54% of the population is obese. With increasing obesity, the risk of other diseases, such as diabetes mellitus type 2, heart failure, arterial hypertension, etc. increases sharply. The reduction of excessive body weight should therefore be aimed at from various points of view. Many obese patients already present with laboratory detectable vitamin D deficiency and hypocalcemia before a potential operation. A conservative therapy approach consisting of nutritional, physical and behavioural treatment forms the basis for any treatment. Under several conditions – e. g., if the patient’s body-mass-index (BMI) exceeds 40 kg/m2 and conservative therapy has failed or if the primary BMI measures above 50 kg/m2 – surgical therapy may be indicated. Possible surgical procedures recommended in Germany are gastric-banding, sleeve-gastrectomy, proximal Roux-en-Y gastric bypass, and omega-loop gastric bypass. These surgical methods result in changes of bone metabolism with potential hypocalcaemia, vitamin D deficiency, increased serum levels of parathyroid hormone, increased fracture risk, and changes in both density and microarchitecture of the bone. In follow-up care after bariatric surgery, adequate supplementation of vitamins, minerals and trace elements, regular monitoring of laboratory parameters and bone density as well as adapted physical training are important components.



Publikationsverlauf

Eingereicht: 01. Juni 2022

Angenommen: 25. Juli 2022

Artikel online veröffentlicht:
08. September 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Schienkiewitz A, Mensink G, Kuhnert R. et al. Übergewicht und adipositas bei erwachsenen in Deutschland. 2017
  • 2 Felsenreich DM, Prager G. Bariatrische Chirurgie–welche Therapieoptionen?. Journal für Gynäkologische Endokrinologie/Österreich 2021; 31: 52-61
  • 3 Hall JE, do Carmo JM, da Silva AA. et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116: 991-1006
  • 4 Fisher DP, Johnson E, Haneuse S. et al. Association Between Bariatric Surgery and Macrovascular Disease Outcomes in Patients With Type 2 Diabetes and Severe Obesity. Jama 2018; 320: 1570-1582
  • 5 Sheka AC, Wirth KM, Ikramuddin S. Preventing Macrovascular Events With Bariatric Surgery. Jama 2018; 320: 1545-1547
  • 6 Schauer DP, Feigelson HS, Koebnick C. et al. Bariatric Surgery and the Risk of Cancer in a Large Multisite Cohort. Ann Surg 2019; 269: 95-101
  • 7 Cohen A, Dempster DW, Recker RR. et al. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab 2013; 98: 2562-2572
  • 8 Krez AN, Stein EM. The Skeletal Consequences of Bariatric Surgery. Curr Osteoporos Rep 2020; 18: 262-272
  • 9 eV DA-G. Interdisziplinäre Leitlinie der Qualität S3 zur „Prävention und Therapie der Adipositas “. In: AWMF Berlin; 2014
  • 10 Dietrich A. Aktuelle S3-Leitlinie „Therapie der Adipositas und metabolischer Erkrankungen “. Allgemein-und Viszeralchirurgie up2date 2019; 13: 111-121
  • 11 Fried M, Yumuk V, Oppert J. et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obesity surgery 2014; 24: 42-55
  • 12 AWMF D-C. S3-Leitlinie: Chirurgie der Adipositas und metabolischer Erkrankungen. In; 2018
  • 13 Alsumali A, Al-Hawag A, Bairdain S. et al. The impact of bariatric surgery on pulmonary function: a meta-analysis. Surgery for Obesity and Related Diseases 2018; 14: 225-236
  • 14 Gloy VL, Briel M, Bhatt DL. et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. Bmj. 2013 347.
  • 15 Colquitt JL, Pickett K, Loveman E. et al. Surgery for weight loss in adults. Cochrane database of systematic reviews. 2014
  • 16 Boido A, Ceriani V, Cetta F. et al. Bariatric surgery and prevention of cardiovascular events and mortality in morbid obesity: mechanisms of action and choice of surgery. Nutrition, Metabolism and Cardiovascular Diseases 2015; 25: 437-443
  • 17 Mingrone G, Panunzi S, De Gaetano A. et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. The Lancet 2015; 386: 964-973
  • 18 Yan Y, Sha Y, Yao G. et al. Roux-en-Y gastric bypass versus medical treatment for type 2 diabetes mellitus in obese patients: a systematic review and meta-analysis of randomized controlled trials. Medicine. 2016 95.
  • 19 Mingrone G, Panunzi S, De Gaetano A. et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. The Lancet 2021; 397: 293-304
  • 20 O’Brien PE, Hindle A, Brennan L. et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obesity surgery 2019; 29: 3-14
  • 21 Golzarand M, Toolabi K, Farid R. The bariatric surgery and weight losing: a meta-analysis in the long-and very long-term effects of laparoscopic adjustable gastric banding, laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy on weight loss in adults. Surgical endoscopy 2017; 31: 4331-4345
  • 22 Thomasius F, Baum E, Bernecker P. et al. DVO Leitlinie 2017 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei postmenopausalen Frauen und Männern. Osteologie 2018; 27: 154-160
  • 23 Stein EM, Strain G, Sinha N. et al. Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study. Clin Endocrinol (Oxf) 2009; 71: 176-183
  • 24 Censani M, Stein EM, Shane E. et al. Vitamin D Deficiency Is Prevalent in Morbidly Obese Adolescents Prior to Bariatric Surgery. ISRN Obes 2013; 2013
  • 25 Pereira-Santos M, Costa PR, Assis AM. et al. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev 2015; 16: 341-349
  • 26 Wortsman J, Matsuoka LY, Chen TC. et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72: 690-693
  • 27 Drincic AT, Armas LA, Van Diest EE. et al. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 2012; 20: 1444-1448
  • 28 Carrelli A, Bucovsky M, Horst R. et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J Bone Miner Res 2017; 32: 237-242
  • 29 Roizen JD, Long C, Casella A. et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J Bone Miner Res 2019; 34: 1068-1073
  • 30 Borges JLC, Miranda ISM, Sarquis MMS. et al. Obesity, Bariatric Surgery, and Vitamin D. J Clin Densitom 2018; 21: 157-162
  • 31 Grethen E, Hill KM, Jones R. et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab 2012; 97: 1655-1662
  • 32 Schellinger D, Lin CS, Lim J. et al. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol 2004; 183: 1761-1765
  • 33 Jordan S, Lim L, Berecki-Gisolf J. et al. Body mass index, physical activity, and fracture among young adults: longitudinal results from the Thai cohort study. J Epidemiol 2013; 23: 435-442
  • 34 Compston JE, Watts NB, Chapurlat R. et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 2011; 124: 1043-1050
  • 35 Marcus RL, Addison O, Dibble LE. et al. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res 2012; 2012: 629637
  • 36 Waters DL. Intermuscular Adipose Tissue: A Brief Review of Etiology, Association With Physical Function and Weight Loss in Older Adults. Ann Geriatr Med Res 2019; 23: 3-8
  • 37 Angrisani L, Santonicola A, Iovino P. et al. Bariatric Surgery Survey 2018: Similarities and Disparities Among the 5 IFSO Chapters. Obes Surg 2021; 31: 1937-1948
  • 38 Victorzon M, Tolonen P. Mean fourteen-year, 100% follow-up of laparoscopic adjustable gastric banding for morbid obesity. Surg Obes Relat Dis 2013; 9: 753-757
  • 39 Salminen P, Helmiö M, Ovaska J. et al. Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss at 5 Years Among Patients With Morbid Obesity: The SLEEVEPASS Randomized Clinical Trial. Jama 2018; 319: 241-254
  • 40 Schauer PR, Bhatt DL, Kirwan JP. et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes – 5-Year Outcomes. N Engl J Med 2017; 376: 641-651
  • 41 Peterli R, Wölnerhanssen BK, Peters T. et al. Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss in Patients With Morbid Obesity: The SM-BOSS Randomized Clinical Trial. Jama 2018; 319: 255-265
  • 42 Bhandari M, Nautiyal HK, Kosta S. et al. Comparison of one-anastomosis gastric bypass and Roux-en-Y gastric bypass for treatment of obesity: a 5-year study. Surg Obes Relat Dis 2019; 15: 2038-2044
  • 43 Kim HJ, Madan A, Fenton-Lee D. Does patient compliance with follow-up influence weight loss after gastric bypass surgery? A systematic review and meta-analysis. Obesity surgery 2014; 24: 647-651
  • 44 Reiber BM, Barendregt R, de Vries R. et al. Is Adherence to Follow-Up After Bariatric Surgery Necessary? A Systematic Review and Meta-Analysis. Obesity Surgery 2022; 1-8
  • 45 Busetto L, Dicker D, Azran C. et al. Practical recommendations of the obesity management task force of the European Association for the Study of obesity for the post-bariatric surgery medical management. Obesity facts 2017; 10: 597-632
  • 46 Mechanick JI, Youdim A, Jones DB. et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Surgery for Obesity and Related Diseases 2013; 9: 159-191
  • 47 Lefebvre P, Letois F, Sultan A. et al. Nutrient deficiencies in patients with obesity considering bariatric surgery: a cross-sectional study. Surgery for obesity and related diseases 2014; 10: 540-546
  • 48 Paccou J, Tsourdi E, Meier C. et al. Bariatric surgery and skeletal health: A narrative review and position statement for management by the European Calcified Tissue Society (ECTS). Bone 2022; 154: 116236
  • 49 Peterson LA, Zeng X, Caufield-Noll CP. et al. Vitamin D status and supplementation before and after bariatric surgery: a comprehensive literature review. Surgery for Obesity and Related Diseases 2016; 12: 693-702
  • 50 Karefylakis C, Näslund I, Edholm D. et al. Vitamin D status 10 years after primary gastric bypass: gravely high prevalence of hypovitaminosis D and raised PTH levels. Obesity surgery 2014; 24: 343-348
  • 51 Giusti V, Gasteyger C, Suter M. et al. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow-up. Int J Obes (Lond) 2005; 29: 1429-1435
  • 52 Hsin MC, Huang CK, Tai CM. et al. A case-matched study of the differences in bone mineral density 1 year after 3 different bariatric procedures. Surg Obes Relat Dis 2015; 11: 181-185
  • 53 Jaruvongvanich V, Vantanasiri K, Upala S. et al. Changes in bone mineral density and bone metabolism after sleeve gastrectomy: a systematic review and meta-analysis. Surg Obes Relat Dis 2019; 15: 1252-1260
  • 54 Bredella MA, Greenblatt LB, Eajazi A. et al. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone 2017; 95: 85-90
  • 55 Crawford MR, Pham N, Khan L. et al. Increased Bone Turnover In Type 2 Diabetes Patients Randomized To Bariatric Surgery Versus Medical Therapy At 5 Years. Endocr Pract 2018; 24: 256-264
  • 56 Bruno C, Fulford AD, Potts JR. et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab 2010; 95: 159-166
  • 57 Goode LR, Brolin RE, Chowdhury HA. et al. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res 2004; 12: 40-47
  • 58 Stein EM, Carrelli A, Young P. et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab 2013; 98: 541-549
  • 59 Buchwald H, Estok R, Fahrbach K. et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. The American journal of medicine 2009; 122: 248-256. e245
  • 60 Risstad H, Søvik TT, Engström M. et al. Five-year outcomes after laparoscopic gastric bypass and laparoscopic duodenal switch in patients with body mass index of 50 to 60: a randomized clinical trial. JAMA surgery 2015; 150: 352-361
  • 61 Zaveri H, Surve A, Cottam D. et al. Mid-term 4-year outcomes with single anastomosis duodenal-ileal bypass with sleeve gastrectomy surgery at a single US center. Obesity Surgery 2018; 28: 3062-3072
  • 62 Khalid SI, Omotosho PA, Spagnoli A. et al. Association of Bariatric Surgery With Risk of Fracture in Patients With Severe Obesity. JAMA Netw Open 2020; 3: e207419
  • 63 Zhang Q, Chen Y, Li J. et al. A meta-analysis of the effects of bariatric surgery on fracture risk. Obes Rev 2018; 19: 728-736
  • 64 Ablett AD, Boyle BR, Avenell A. Fractures in Adults After Weight Loss from Bariatric Surgery and Weight Management Programs for Obesity: Systematic Review and Meta-analysis. Obes Surg 2019; 29: 1327-1342
  • 65 Lalmohamed A, de Vries F, Bazelier MT. et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. Bmj 2012; 345: e5085
  • 66 Maghrabi AH, Wolski K, Abood B. et al. Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity (Silver Spring) 2015; 23: 2344-2348
  • 67 Douglas IJ, Bhaskaran K, Batterham RL. et al. Bariatric Surgery in the United Kingdom: A Cohort Study of Weight Loss and Clinical Outcomes in Routine Clinical Care. PLoS Med 2015; 12: e1001925
  • 68 Paccou J, Caiazzo R, Lespessailles E. et al. Bariatric Surgery and Osteoporosis. Calcif Tissue Int 2022; 110: 576-591
  • 69 Saad RK, Ghezzawi M, Habli D. et al. Fracture risk following bariatric surgery: a systematic review and meta-analysis. Osteoporos Int 2022; 33: 511-526
  • 70 Ahlin S, Peltonen M, Sjöholm K. et al. Fracture risk after three bariatric surgery procedures in Swedish obese subjects: up to 26 years follow-up of a controlled intervention study. J Intern Med 2020; 287: 546-557
  • 71 Blom-Høgestøl IK, Hewitt S, Chahal-Kummen M. et al. Bone metabolism, bone mineral density and low-energy fractures 10 years after Roux-en-Y gastric bypass. Bone 2019; 127: 436-445
  • 72 Muschitz C, Kocijan R, Haschka J. et al. The Impact of Vitamin D, Calcium, Protein Supplementation, and Physical Exercise on Bone Metabolism After Bariatric Surgery: The BABS Study. J Bone Miner Res 2016; 31: 672-682
  • 73 Handzlik-Orlik G, Holecki M, Orlik B. et al. Nutrition management of the post–bariatric surgery patient. Nutrition in Clinical Practice 2015; 30: 383-392
  • 74 Pinnock GL, O’Kane M. Nutritional management after bariatric surgery. In Obesity, Bariatric and Metabolic Surgery: A Comprehensive Guide. Springer; 2021: 1-15
  • 75 Liu Y, Côté MM, Cheney MC. et al. Zoledronic acid for prevention of bone loss in patients receiving bariatric surgery. Bone Rep 2021; 14: 100760
  • 76 Hospital MG, University of California SF, System SFVHC. Denosumab to Prevent High-Turnover Bone Loss After Bariatric Surgery. In:. https://ClinicalTrials.gov/show/NCT04087096 2020
  • 77 Swafford AA, Ard JD, Beavers DP. et al. Risedronate to Prevent Bone Loss After Sleeve Gastrectomy: Study Design and Feasibility Report of a Pilot Randomized Controlled Trial. JBMR Plus 2020; 4: e10407