Abstract
Background Venipunctures and the testing they facilitate are clinically necessary, particularly for hospitalized patients. However, excess venipunctures lead to patient harm, decreased patient satisfaction, and waste.
Objectives We sought to identify contributors to excess venipunctures at our institution, focusing on electronic health record (EHR)-related factors. We then implemented and evaluated the impact of an intervention targeting one of the contributing factors.
Methods We employed the quality improvement (QI) methodology to find sources of excess venipunctures, specifically targeting add-on failures. Once an error was identified, we deployed an EHR-based intervention which was evaluated with retrospective pre- and postintervention analysis.
Results We identified an error in how the EHR evaluated the ability of laboratories across a health system to perform add-on tests to existing blood specimens. A review of 195,263 add-on orders placed prior to the intervention showed that 165,118 were successful and 30,145 failed, a failure rate of 15.4% (95% confidence interval [CI]: 15.1–15.6). We implemented an EHR-based modification that changed the criteria for add-on testing from a health-system-wide query of laboratory capabilities to one that incorporated only the capabilities of laboratories with feasible access to existing patient samples. In the 6 months following the intervention, a review of 87,333 add-on orders showed that 77,310 were successful, and 10,023 add-on orders failed resulting in a postintervention failure rate of 11.4% (95% CI: 11.1, 11.8) (p < 0.001).
Conclusion EHR features such as the ability to identify possible add-on tests are designed to reduce venipunctures but may produce unforeseen negative effects on downstream processes, particularly as hospitals merge into health systems using a single EHR. This case report describes the successful identification and correction of one cause of add-on laboratory failures. QI methodology can yield important insights that reveal simple interventions for improvement.
Keywords
laboratory information systems - clinical decision - electronic health records