Subscribe to RSS
DOI: 10.1055/a-1914-0423
Synthesis of 3-Aryl- and 3-Alkynylbenzofurans in the Presence of a Supported Palladium Catalyst
This work was supported by the European Union - European Regional Development Fund (GINOP-2.3.2-15-2016-00049) and by the Ministry of Culture and Innovation of Hungary (TKP2021-NKTA-21).
![](https://www.thieme-connect.de/media/synthesis/202301/lookinside/thumbnails/ss-2022-t0282-op_10-1055_a-1914-0423-1.jpg)
Abstract
Suzuki and Sonogashira coupling reactions of 3-iodo-2-phenylbenzofuran, leading to the corresponding 3-aryl- and 3-alkynyl derivatives, respectively, were carried out using a silica supported pyridinium ionic liquid-based heterogeneous catalyst. Under optimized reaction conditions, arylboronic acids with either electron-withdrawing or -donating substituents as well as terminal alkynes with aromatic or aliphatic groups could be coupled to the benzofuran skeleton efficiently. The application of this catalyst made it possible to carry out the reaction under phosphine-free and, in the case of the Sonogashira coupling, under copper-free conditions. The catalyst retained its activity in at least 7 subsequent runs in both types of reactions. Palladium leaching of less than 1% of the original amount used in the catalytic reaction was observed under optimized conditions in most cases. The methodology was applied successfully to the synthesis of nine different 3-aryl- and ten different 3-alkynylbenzofuran derivatives in moderate to high yields.
Key words
Suzuki coupling - Sonogashira coupling - heterogeneous palladium catalyst - 3-arylbenzofurans - 3-alkynylbenzofuransSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1914-0423.
- Supporting Information
Publication History
Received: 10 June 2022
Accepted after revision: 01 August 2022
Accepted Manuscript online:
01 August 2022
Article published online:
28 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Chand K, Rajeshwari, Hiremathad A, Singh M, Santos MA, Keri RS. Pharmacol. Rep. 2017; 69: 281
- 2 Kuramochi K, Tsubaki K. J. Nat. Prod. 2015; 78: 1056
- 3 Heravi MM, Zadsirjan V, Hamidi H, Amiri PH. T. RSC Adv. 2017; 7: 24470
- 4 Miao YH, Hu YH, Yang J, Liu T, Sun J, Wang XJ. RSC Adv. 2019; 9: 27510
- 5 Khanam H. Eur. J. Med. Chem. 2015; 97: 483
- 6 Xu Z, Zhao S, Lv Z, Feng L, Wang Y, Zhang F, Bai L, Deng J. Eur. J. Med. Chem. 2019; 162: 266
- 7 Xu Z, Xu D, Zhou W, Zhang X. Curr. Top. Med. Chem. 2022; 22: 64
- 8 Cabrera-Pardo JR, Fuentealba J, Gavilán J, Cajas D, Becerra J, Napiórkowska M. Front. Pharmacol. 2020; 10: 1679
- 9 Alizadeh M, Jalal M, Khodaei Hamed AS, Kheirouri S, Tabrizi FP. F, Kamari N. J. Inflamm. Res. 2020; 13: 451
- 10 Farhat J, Alzyoud L, Alwahsh M, Al-Omari B. Cancers 2022; 14: 2196
- 11 Szoke-Kovacs Zs, More Cs, Szoke-Kovacs R, Mathe E, Frecska E. Neuropsychopharmacol. Hung. 2020; 22: 4
- 12 Plenge P, Yang D, Salomon K, Laursen L, Kalenderoglou IE, Newman AH, Gouaux E, Coleman JA, Loland CJ. Nat. Commun. 2021; 12: 1
- 13 Zaidel EJ. Arch. Clin. Exp. Cardiol. 2019; 1: 102
- 14 Schramm S, Weiss D. Adv. Heterocycl. Chem. 2019; 128: 103
- 15 Zheng B, Huo L. Small Methods 2021; 5: 2100493
- 16 Chiummiento L, D’Orsi R, Funicello M, Lupattelli P. Molecules 2020; 25: 2327
- 17 Patonay T, Kónya K. Synthesis and Modification of Heterocycles by Metal-Catalyzed Cross-Coupling Reactions, Vol. 45. Springer; Basel: 2016
- 18 Li YL, Li J, Yu SN, Wang JB, Yu YM, Deng J. Tetrahedron 2015; 71: 8271
- 19 Bokoskie T, Cunningham C, Kornman C, Kesharwani T, Pattabiraman M. ACS Omega 2019; 4: 17830
- 20 Arcadi A, Cacchi S, Fabrizi G, Marinelli F, Moro L. Synlett 1999; 1432
- 21 Cho CH, Neuenswander B, Lushington GH, Larock RC. J. Comb. Chem. 2008; 10: 941
- 22 Colobert F, Castanet AS, Abillard O. Eur. J. Org. Chem. 2005; 3334
- 23 Lamblin M, Nassar-Hardy L, Hierso JC, Fouquet E, Felpin FX. Adv. Synth. Catal. 2010; 352: 33
- 24 Molnar A. Chem. Rev. 2011; 111: 2251
- 25 Nasrollahzadeh M. Molecules 2018; 23: 2532
- 26 Díaz-Sánchez M, Díaz-García D, Prashar S, Gómez-Ruiz S. Environ. Chem. Lett. 2019; 17: 1585
- 27 De Tovar J, Rataboul F, Djakovitch L. Appl. Catal., A 2021; 627: 118381
- 28 Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Pastor IM, Ramón DJ. Catalysts 2018; 8: 202
- 29 Akhtar R, Zahoor AF, Parveen B, Suleman M. Synth. Commun. 2019; 49: 167
- 30 Nasrollahzadeh M, Motahharifar N, Ghorbannezhad F, Bidgoli NS. S, Baran T, Varma RS. Mol. Catal. 2020; 480: 110645
- 31 Adamcsik B, Nagy E, Urbán B, Szabó P, Pekker P, Skoda-Földes R. RSC Adv. 2020; 10: 23988
- 32 Urbán B, Nagy E, Nagy P, Papp M, Skoda-Földes R. J. Organomet. Chem. 2020; 918: 121287
- 33 Papp M, Szabó P, Srankó D, Sáfrán G, Kollár L, Skoda-Földes R. RSC Adv. 2017; 7: 44587
- 34 Urbán B, Szabó P, Srankó D, Sáfrán G, Kollár L, Skoda-Földes R. Mol. Catal. 2018; 445: 195
- 35 Yue D, Yao T, Larock RC. J. Org. Chem. 2005; 70: 10292
- 36 Sherwood J, Clark JH, Fairlamb IJ, Slattery JM. Green Chem. 2019; 21: 2164
- 37 Mohajer F, Heravi MM, Zadsirjan V, Poormohammad N. RSC Adv. 2021; 11: 6885
- 38 Khazaei A, Rahmati S, Saednia S. Catal. Commun. 2013; 37: 9
- 39 Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
- 40 Phan NT, Van Der Sluys M, Jones CW. Adv. Synth. Catal. 2006; 348: 609
- 41 De Vries JG. Dalton Trans. 2006; 421
- 42 Thathagar MB, Kooyman PJ, Boerleider R, Jansen E, Elsevier CJ, Rothenberg G. Adv. Synth. Catal. 2005; 347: 1965
- 43 Han JS, Chen SQ, Zhong P, Zhang XH. Synth. Commun. 2014; 44: 3148
- 44 Mandali PK, Chand DK. Synthesis 2015; 47: 1661
- 45 Shi W, Coleman RS, Lowary TL. Org. Biomol. Chem. 2009; 7: 3709