Klin Monbl Augenheilkd 2022; 239(12): 1427-1432
DOI: 10.1055/a-1926-5249
Übersicht

Technologien zur In-vivo-Untersuchung der Biomechanik der Hornhaut: Brillouin-Spektroskopie und Hydratationszustand – quo vadis?

Artikel in mehreren Sprachen: deutsch | English
Alexander Heisterkamp
1   Institut für Quantenoptik, Leibniz Universität Hannover, Deutschland
2   Biomedizinische Optik, Laser Zentrum Hannover, Deutschland
,
Johannes Wenzel
1   Institut für Quantenoptik, Leibniz Universität Hannover, Deutschland
,
Christian Iriarte
1   Institut für Quantenoptik, Leibniz Universität Hannover, Deutschland
,
Stefan Klaus Michael Kalies
1   Institut für Quantenoptik, Leibniz Universität Hannover, Deutschland
,
Stephan Reiss
3   Augenoptik/Optometrie, Berliner Hochschule für Technik, Fachbereich VII Elektrotechnik – Mechatronik – Optometrie, Berlin, Deutschland
,
Oliver Stachs
4   Augenklinik, Universitätsmedizin Rostock, Deutschland
,
4   Augenklinik, Universitätsmedizin Rostock, Deutschland
› Institutsangaben

Zusammenfassung

Um die strukturelle Integrität der Kornea zu beurteilen, werden nicht invasive Verfahren für die lokale Messung ihrer mechanischen Eigenschaften benötigt. Neben einer Reihe von etablierten Verfahren und den damit assoziierten Vor- und Nachteilen ist die Brillouin-Spektroskopie als ein immer noch relativ neues Verfahren in der Lage, den Kompressionsmodul von biologischem Gewebe, speziell der Kornea, in vivo zu bestimmen. Im vorliegenden Beitrag werden diese verschiedenen existierenden und in der Entwicklung befindlichen Technologien zur Untersuchung der Biomechanik der Hornhaut diskutiert und zueinander in Korrelation gesetzt.



Publikationsverlauf

Eingereicht: 01. Juni 2022

Angenommen: 17. August 2022

Accepted Manuscript online:
17. August 2022

Artikel online veröffentlicht:
09. Dezember 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur/References

  • 1 Andreassen TT, Simonsen AH, Oxlund H. Biomechanical Properties of Keratokonus and Normal Corneas. Exp Eye Res 1980; 31: 435-441 DOI: 10.1016/S0014-4835(80)80027-3.
  • 2 Nash IS, Greene PR, Foster CS. Comparison of Mechanical Properties Normal Corneas of Keratoconus. Exp Eye Res 1982; 31: 413-423 DOI: 10.1016/0014-4835(82)90040-9.
  • 3 Seiler T, Matallana M, Sendler S. et al. Does Bowmanʼs Layer Determine the Biomechanical Properties of the Cornea?. J Refract Surg 1992; 8: 139-142
  • 4 Borja D, Manns F, Lamar P. et al. Preparation and Hydration Control of Corneal Tissue Strips for Experimental Use. Cornea 2004; 23: 61-66
  • 5 Elsheikh A, Anderson K. Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2005; 2: 177-185
  • 6 Seifert J, Hammer CM, Rheinlaender J. et al. Distribution of Youngʼs Modulus in Porcine Corneas after Riboflavin/UVA-Induced Collagen Cross-Linking as Measured by Atomic Force Microscopy. PLoS One 2014; 9: e88186
  • 7 Sperlich K, Reiß S, Bohn S. et al. Auswirkungen des altersbezogenen kornealen Elastizitätsmoduls auf die Applanationstonometrie. Klin Monbl Augenheilkd 2017; 234: 1472-1476
  • 8 Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31: 156-162
  • 9 Wang H, Prendiville PL, McDonnell PJ. et al. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J Biomech 1996; 29: 1633-1636
  • 10 Dupps jr. WJ, Netto MV, Herekar S. et al. Surface Wave Elastometry of the Cornea in Porcine and Human Donor Eyes. J Refract Surg 2007; 23: 66-75
  • 11 Hollman KW, Emelianov SY, Neiss JH. et al. Strain Imaging of Corneal Tissue with an Ultrasound Elasticity Microscope. Cornea 2002; 21: 68-73
  • 12 Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the human eye. Opt Express 2012; 20: 9197
  • 13 Larin KV, Sampson DD. Optical coherence elastography – OCT at work in tissue biomechanics. Biomed Opt Express 2017; 8: 1172-1202
  • 14 Shao P, Seiler TG, Eltony AM. et al. Effects of corneal hydration on Brillouin microscopy in vivo. Invest Ophthalmol Vis Sci 2018; 59: 3020-3027
  • 15 Singh M, Li J, Han Z. et al. Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography. Biomed Opt Express 2017; 8: 349-366
  • 16 Wang S, Larin KV. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed Opt Express 2014; 5: 3807-3821
  • 17 Scarcelli G, Besner S, Pineda R. et al. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci 2014; 55: 4490-4495
  • 18 Scarcelli G, Yun SH. Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy. Opt Express 2011; 19: 10913-10922
  • 19 Reiß S, Burau G, Stachs O. et al. Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed Opt Express 2011; 2: 2144-2159
  • 20 Reiß S, Stolz H, Stachs O. et al. Verfahren und Vorrichtung zur Bestimmung einer spektralen Änderung von gestreutem Licht. Patent DE102013211854, 2016
  • 21 Antonacci G, Beck T, Bilenca A. et al. Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys Rev 2020; 12: 615-624
  • 22 Remer I, Shaashoua R, Shemesh N. et al. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat Methods 2020; 17: 913-916
  • 23 Krug B, Koukourakis N, Czarske JW. Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels. Opt Express 2019; 16 (27) 26910-26923
  • 24 Antonacci G, Braakman S. Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci Rep 2016; 6: 37217
  • 25 Antonacci G, Foreman MR, Paterson C. et al. Spectral broadening in Brillouin imaging. Appl Phys Lett 2013; 103: 221105
  • 26 Taylor MA, Kijas AW, Wang Z. et al. Heterodyne Brillouin microscopy for biomechanical imaging. Biomed Opt Express 2021; 12: 6259-6268
  • 27 Schunemann M, Sperlich K, Barnscheidt K. et al. Balanced Heterodyne Brillouin Spectroscopy Towards Tissue Characterization. IEEE Access 2022; 10: 24340-24348
  • 28 Mow VC, Kuei SC, Lai WM. et al. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 1980; 102: 73-84
  • 29 Seiler TG, Shao P, Eltony A. et al. Brillouin Spectroscopy of Normal and Keratoconus Corneas. Am J Ophthalmol 2019; 202: 118-125
  • 30 Reiß S, Stachs O, Guthoff R. et al. Non-invasive, ortsaufgelöste Bestimmung von Gewebeeigenschaften der Augenlinse hinsichtlich Rheologie, Brechungsindex, Dichte und Proteinkonzentration unter Anwendung der Brillouin-Spektroskopie. Klin Monbl Augenheilkd 2011; 228: 1079-1085
  • 31 Scarcelli G, Pineda R, Yun SH. Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci 2012; 53: 185-190
  • 32 Traverso AJ, Thompson JV, Steelman ZA. et al. Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging. Anal Chem 2015; 87: 7519-7523
  • 33 Hajjarian Z, Nadkarni SK. Tutorial on laser speckle rheology: technology, applications, and opportunities. J Biomed Opt 2020; 25: 1-19