Subscribe to RSS
DOI: 10.1055/a-1931-0749
Carbon Materials as Catalytic Tools for Oxidative Dehydrogenations and Couplings in Liquid Phase


Abstract
Carbocatalysis is a heterogeneous metal-free catalytic technique of high potential for current and future synthetic processes. Carbocatalysts entail heterogeneous materials based on sp2/sp3 interconnected carbons decorated with oxygen functional groups, defects, and other heteroatom dopants. In this short review, we cover a wide range of different carbocatalyzed oxidative dehydrogenation reactions, with particular emphasis on liquid-phase transformations that are relevant for synthetic organic chemists.
1 Introduction
2 Structures of Catalytic Carbon Materials
3 Oxidative Aromatizations with Activated Carbon
4 Oxidative Dehydrogenation CH–CH Couplings
5 Oxidative Dehydrogenation Coupling of Benzyl Amines
6 Oxidations of Alcohols
7 Other Oxidative Transformations by Heteroatom-Doped Carbon Materials
8 Asphaltene Oxide
9 Conclusions and Outlook
Key words
carbocatalysis - oxidative dehydrogenation - aromatization - carbon–carbon coupling - carbon–heteroatom couplingPublication History
Received: 05 July 2022
Accepted after revision: 25 August 2022
Accepted Manuscript online:
25 August 2022
Article published online:
23 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bredig G, Fiske W. Beiträge Zur Chemischen Physiologie Und Pathologie. Springer; Berlin: 1912
- 2 List B. J. Am. Chem. Soc. 2000; 122: 9336
- 3 Rideal EK, Wright WM. J. Chem. Soc., Trans. 1925; 127: 1347
- 4a Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
- 4b Abednatanzi S, Gohari Derakhshandeh P, Leus K, Vrielinck H, Callens F, Schmidt J, Savateev A, van der Voort P. Sci. Adv. 2020; 6: eaaz2310
- 4c Primo A, Neatu F, Florea M, Parvulescu V, Garcia H. Nat. Commun. 2014; 5: 5291
- 5 Wirtanen T, Mäkelä MK, Sarfraz J, Ihalainen P, Hietala S, Melchionna M, Helaja J. Adv. Synth. Catal. 2015; 357: 3718
- 6 Casadio DS, Aikonen S, Lenarda A, Nieger M, Hu T, Taubert S, Sundholm D, Muuronen M, Wirtanen T, Helaja J. Chem. Eur. J. 2021; 27: 5283
- 7 Acocella MR, Mauro M, Falivene L, Cavallo L, Guerra G. ACS Catal. 2014; 4: 492
- 8a Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlögl R. ChemSusChem 2010; 3: 169
- 8b Tang P, Hu G, Li M, Ma D. ACS Catal. 2016; 6: 6948
- 8c Ahmad MS, Nishina Y. Nanoscale 2020; 12: 12210
- 8d Wu S, Yu L, Wen G, Xie Z, Lin Y. J. Energy Chem. 2021; 58: 318
- 9 Qi W, Su D. ACS Catal. 2014; 4: 3212
- 10 Duan X, Sun H, Wang S. Acc. Chem. Res. 2018; 51: 678
- 11 Li X.-F, Lian K.-Y, Liu L, Wu Y, Qiu Q, Jiang J, Deng M, Luo Y. Sci. Rep. 2016; 6: 23495
- 12a Su DS, Wen G, Wu S, Peng F, Schlögl R. Angew. Chem. Int. Ed. 2017; 56: 936
- 12b Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Rev. 2014; 114: 6179
- 13 Gong Y, Wei Z, Wang J, Zhang P, Li H, Wang Y. Sci Rep. 2014; 4: 6349
- 14a Boehm H.-P, Diehl E, Heck W, Sappok R. Angew. Chem. Int. Ed. 1964; 3: 669
- 14b Boehm HP. Chemical Identification of Surface Groups . In Advances in Catalysis, Vol. 16. Eley DD, Pines H, Weisz PB. Academic Press; New York: 1966: 179-274
- 15 Figueiredo JL, Pereira MF. R. Catal. Today 2010; 150: 2
- 16 Wirtanen T, Aikonen S, Muuronen M, Melchionna M, Kemell M, Davodi F, Kallio T, Hu T, Helaja J. Chem. Eur. J. 2019; 25: 12288
- 17 Wu S, Wen G, Liu X, Zhong B, Su DS. ChemCatChem 2014; 6: 1558
- 18a Zhang J, Wang X, Su Q, Zhi L, Thomas A, Feng X, Su DS, Schlögl R, Müllen K. J. Am. Chem. Soc. 2009; 131: 11296
- 18b Shan W, Li S, Cai X, Zhu J, Zhou Y, Wang J. ChemCatChem 2019; 11: 1076
- 18c Wu S, Lin Y, Zhong B, Wen G, Liu H, Su DS. Phys. Chem. Chem. Phys. 2019; 21: 1019
- 18d Mollar-Cuni A, Ventura-Espinosa D, Martín S, García H, Mata JA. ACS Catal. 2021; 11: 14688
- 19 Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, García H. Chem. Soc. Rev. 2017; 46: 4501
- 20a Mestl G, Maksimova NI, Keller N, Roddatis VV, Schlögl R. Angew. Chem. Int. Ed. 2001; 40: 2066
- 20b Schraut A, Emig G, Sockel H.-G. Appl. Catal. 1987; 29: 311
- 20c Rodríguez-Reinoso F. Carbon 1998; 36: 159
- 21 Su C, Acik M, Takai K, Lu J, Hao S.-j, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ, Loh KP. Nat. Commun. 2012; 3: 1298
- 22 Kawashita Y, Hayashi M. Molecules 2009; 14: 3073
- 23 Hayashi M. Chem. Rec. 2008; 8: 252
- 24 Kawashita Y, Nakamichi N, Kawabata H, Hayashi M. Org. Lett. 2003; 5: 3713
- 25 Chang J, Zhao K, Pan S. Tetrahedron Lett. 2002; 43: 951
- 26 Kawashita Y, Ueba C, Hayashi M. Tetrahedron Lett. 2006; 47: 4231
- 27 Nakamichi N, Kawashita Y, Hayashi M. Synthesis 2004; 7: 1015
- 28 Nakamichi N, Kawashita Y, Hayashi M. Org. Lett. 2002; 4: 3955
- 29 Nakamichi N, Kawabata H, Hayashi M. J. Org. Chem. 2003; 68: 8272
- 30 Hayashi M, Nomura Y, Kawashita Y. Heterocycles 2007; 74: 629
- 31 Haneda S, Okui A, Ueba C, Hayashi M. Tetrahedron 2007; 63: 2414
- 32 Hayashi M, Okunaga K.-i, Nomura Y, Kawamura K, Nakamichi N, Eda K. Heterocycles 2008; 76: 715
- 33 Tanaka T, Okunaga K.-i, Hayashi M. Tetrahedron Lett. 2010; 51: 4633
- 34 Hayashi M, Okunaga K.-i, Nishida S, Kawamura K, Eda K. Tetrahedron Lett. 2010; 51: 6734
- 35 Kim S, Matsubara R, Hayashi M. J. Org. Chem. 2019; 84: 2997
- 36 Kawashita Y, Yanagi J, Fujii T, Hayashi M. Bull. Chem. Soc. Jpn. 2009; 82: 482
- 37 Bégin D, Ulrich G, Amadou J, Su DS, Pham-Huu C, Ziessel R. J. Mol. Catal. A: Chem. 2009; 302: 119
- 38 Jia H.-P, Dreyer DR, Bielawski CW. Tetrahedron Lett. 2011; 67: 4431
- 39 Štefane B, Požgan F. Monatsh. Chem. 2014; 145: 1329
- 40 Enders L, Casadio DS, Aikonen S, Lenarda A, Wirtanen T, Hu T, Hietala S, Ribeiro LS, Pereira MF. R, Helaja J. Catal. Sci. Technol. 2021; 11: 5962
- 41a Pereira MF. R, Órfão JJ. M, Figueiredo JL. Appl. Catal., A 1999; 184: 153
- 41b Pereira MF. R, Órfão JJ. M, Figueiredo JL. Appl. Catal., A 2001; 218: 307
- 41c Pereira MF. R, Orfão JJ. M, Figueiredo JL. Appl. Catal., A 2000; 196: 43
- 42 Mäkelä M, Bulatov E, Malinen K, Talvitie J, Nieger M, Melchionna M, Lenarda A, Hu T, Wirtanen T, Helaja J. Adv. Synth. Catal. 2021; 363: 3773
- 43 Krivec M, Gazvoda M, Kranjc K, Polanc S, Kočevar M. J. Org. Chem. 2012; 77: 2857
- 44 Yang W, Zhou Y, Sun H, Zhang L, Zhao F, Liu H. RSC Adv. 2014; 4: 15007
- 45 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 46 Perea-Buceta JE, Wirtanen T, Laukkanen O.-V, Mäkelä MK, Nieger M, Melchionna M, Huittinen N, Lopez-Sanchez JA, Helaja J. Angew. Chem. Int. Ed. 2013; 52: 11835
- 47 Zhai L, Shukla R, Wadumethrige SH, Rathore R. J. Org. Chem. 2010; 75: 4748
- 48 Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
- 49 El-Hout SI, Zhou Y, Kano J, Uchida Y, Nishina Y. Catal. Lett. 2020; 150: 256
- 50 Wu H, Su C, Tandiana R, Liu C, Qiu C, Bao Y, Wu J, Xu Y, Lu J, Fan D, Loh KP. Angew. Chem. Int. Ed. 2018; 57: 10848
- 51 Wu H, Qiu C, Zhang Z, Zhang B, Zhang S, Xu Y, Zhou H, Su C, Loh KP. Adv. Synth. Catal. 2020; 362: 789
- 52 Morioku K, Morimoto N, Takeuchi Y, Nishina Y. Sci. Rep. 2016; 6: 25824
- 53 Shaikh M, Sahu A, Kiran Kumar A, Sahu M, Singh SK, Ranganath KV. S. Green Chem. 2017; 19: 4533
- 54 Fang J, Peng Z, Yang Y, Wang J, Guo J, Gong H. Asian J. Org. Chem. 2018; 7: 355
- 55 Huang H, Huang J, Liu Y.-M, He H.-Y, Cao Y, Fan K.-N. Green Chem. 2012; 14: 930
- 56 Rangraz Y, Heravi MM. RSC Adv. 2021; 11: 23725
- 57 Li X.-H, Antonietti M. Angew. Chem. Int. Ed. 2013; 52: 4572
- 58 Wang H, Zheng X, Chen H, Yan K, Zhu Z, Yang S. Chem. Commun. 2014; 50: 7517
- 59a Chen B, Wang L, Dai W, Shang S, Lv Y, Gao S. ACS Catal. 2015; 5: 2788
- 59b Chen B, Shang S, Wang L, Zhang Y, Gao S. Chem. Commun. 2016; 52: 481
- 59c Wang X, Li Y. J. Mater. Chem. A 2016; 4: 5247
- 59d Chung I.-M, Gopiraman M. React. Kinet. Mech. Catal. 2017; 122: 205
- 59e Wang D, Mejía E. ChemistrySelect 2017; 2: 3381
- 59f Yang F, Fan X, Wang C, Yang W, Hou L, Xu X, Feng A, Dong S, Chen K, Wang Y, Li Y. Carbon 2017; 121: 443
- 59g Yang P, Zhang J, Liu D, Liu M, Zhang H, Zhao P, Zhang C. Microporous Mesoporous Mater. 2018; 266: 198
- 59h Ye J, Ni K, Liu J, Chen G, Ikram M, Zhu Y. ChemCatChem 2018; 10: 259
- 59i Zhai Y, Chu M, Xie C, Huang F, Zhang C, Zhang Y, Liu H, Wang H, Gao Y. ACS Sustainable Chem. Eng. 2018; 6: 17410
- 59j Li Y, Shang S, Wang L, Lv Y, Niu J, Gao S. Chem. Commun. 2019; 55: 12251
- 59k Wang K, Jiang P, Yang M, Ma P, Qin J, Huang X, Ma L, Li R. Green Chem. 2019; 21: 2448
- 59l Liu S, Chen S, Yu A, Hu Y, Yu B, Wang H, Peng P, Li F.-F. Green Chem. 2020; 22: 7839
- 60 Zhu S, Cen Y, Yang M, Guo J, Chen C, Wang J, Fan W. Appl. Catal., B 2017; 211: 89-97
- 61 Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ. Science 2006; 311: 362
- 62a Yoskamtorn T, Yamazoe S, Takahata R, Nishigaki J.-i, Thivasasith A, Limtrakul J, Tsukuda T. ACS Catal. 2014; 4: 3696
- 62b Zhang P, Gong Y, Li H, Chen Z, Wang Y. Nat. Commun. 2013; 4: 1593
- 63 Kuang Y, Islam NM, Nabae Y, Hayakawa T, Kakimoto M.-A. Angew. Chem. Int. Ed. 2010; 49: 436
- 64 Dreyer DR, Jia H.-P, Bielawski CW. Angew. Chem. Int. Ed. 2010; 49: 6813
- 65 Kuang Y, Rokubuichi H, Nabae Y, Hayakawa T, Kakimoto M.-A. Adv. Synth. Catal. 2010; 352: 2635
- 66 Aellig C, Neuenschwander U, Hermans I. ChemCatChem 2012; 4: 525
- 67 Luo J, Peng F, Yu H, Wang H. Chem. Eng. J. 2012; 204–206: 98
- 68 Li S, Zhang X, Huang X, Wu S, Xie Z. J. Colloid Interface Sci. 2022; 608: 2801
- 69 Cui Y, Lee YH, Yang JW. Sci. Rep. 2017; 7: 3146
- 70 Yang H, Cui X, Deng Y, Shi F. RSC Adv. 2014; 4: 59754
- 71 Li J, Li M, Sun H, Ao Z, Wang S, Liu S. ACS Catal. 2020; 10: 3516
- 72 Li J, Li F, Yang Q, Wang S, Sun H, Yang Q, Tang J, Liu S. Carbon 2021; 182: 715
- 73 Presolski S, Pumera M. Angew. Chem. Int. Ed. 2018; 57: 16713
- 74 Geng L, Wu S, Zou Y, Jia M, Zhang W, Yan W, Liu G. J. Colloid Interface Sci. 2014; 421: 71
- 75 Luo J, Yu H, Wang H, Wang H, Peng F. Chem. Eng. J. 2014; 240: 434
- 76 Luo J, Peng F, Wang H, Yu H. Catal. Commun. 2013; 39: 44
- 77 Watanabe H, Asano S, Fujita S.-i, Yoshida H, Arai M. ACS Catal. 2015; 5: 2886
- 78a Hu X, Fan M, Zhu Y, Zhu Q, Song Q, Dong Z. Green Chem. 2019; 21: 5274
- 78b Xing C, Zhang Y, Gao Y, Kang Y, Zhang S. New J. Chem. 2021; 45: 13877
- 79 Zhu S, Chen Y, Gao X, Lv Z, He Y, Wang J, Fan W. Catal. Sci. Technol. 2020; 10: 2786
- 80 Shang S, Dai W, Wang L, Lv Y, Gao S. Chem. Commun. 2017; 53: 1048
- 81 Shang S, Chen P.-P, Wang L, Lv Y, Li W.-X, Gao S. ACS Catal. 2018; 8: 9936
- 82 Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Angew. Chem. Int. Ed. 2021; 60: 21479
- 83 Lu L, Pei X, Mei Y, Deng Y, Zhang H, Zhang L, Lei A. Chem 2018; 4: 2861
- 84a Uozumi Y, Arii T, Watanabe T. J. Org. Chem. 2001; 66: 5272
- 84b Iizuka M, Kondo Y. Chem. Commun. 2006; 1739
- 85 Jung H, Bielawski CW. Commun. Chem. 2019; 2: 1233
- 86a Zhang J, Su D, Zhang A, Wang D, Schlögl R, Hébert C. Angew. Chem. Int. Ed. 2007; 46: 7319
- 86b Boudart M. Chem. Rev. 1995; 95: 661
- 86c Qi W, Liu W, Guo X, Schlögl R, Su D. Angew. Chem. Int. Ed. 2015; 127: 13886
- 86d Qi W, Liu W, Zhang B, Gu X, Guo X, Su D. Angew. Chem. Int. Ed. 2013; 52: 14224
- 87 Marsh H, Rodriguez-Reinoso F. Activated Carbon . Elsevier; Amsterdam: 2006