Subscribe to RSS
DOI: 10.1055/a-1937-9901
Selective Stimulation of the Different Photoreceptor Classes by Silent Substitution in Psychophysical and Electroretinographic Measurements
Article in several languages: deutsch | EnglishAbstract
The silent substitution technique allows creating photoreceptor-selective stimuli for psychophysical and electrophysiological tests. In contrast to other techniques, the purpose of silent substitution is not to make the targeted photoreceptor type more sensitive in comparison to the other types, but to make the stimulus invisible (“silent”) to the other photoreceptor types. This allows selectivity independent of the retinal state of adaptation and enables comparing photoreceptor types under identical conditions. The foundations of these techniques will be explained in this paper. Furthermore, the importance of postreceptoral processing for the perception of photoreceptor-selective stimuli is discussed here. Although this technique is currently only available in specialized vision science labs, there is an enormous potential for clinical application.
Publication History
Received: 31 May 2022
Accepted: 02 September 2022
Article published online:
09 December 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur/References
- 1 Goldmann H. Lichtsinn mit besonderer Berücksichtigung der Perimetrie. Ophthalmologica 1969; 158: 362-386
- 2 Smith VC, Pokorny J, Davis M. et al. Mechanisms subserving temporal modulation sensitivity in silent-cone substitution. J Opt Soc Am A Opt Image Sci Vis 1995; 12: 241-249
- 3 Rodieck R. The first steps in seeing. Sunderland: Sinauer Associates; 1998
- 4 Huchzermeyer C, Schlomberg J, Welge-Lüssen U. et al. Macular pigment optical density measured by heterochromatic modulation photometry. PLoS One 2014; 9: e110521
- 5 Estevez O, Spekreijse H. The “silent substitution” method in visual research. Vision Res 1982; 22: 681-691
- 6 Levin L, Nilsson S, Ver Hoeve J, Wu S, Kaufman P, Alm A. eds. Adlerʼs Physiology of the Eye: Expert Consult – online and print. Philadelphia: Saunders; 2011
- 7 Donner KO, Rushton WA. Retinal stimulation by light substitution. J Physiol 1959; 149: 288-302
- 8 Shapiro AG, Pokorny J, Smith VC. Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra. J Opt Soc Am A Opt Image Sci Vis 1996; 13: 2319-2328
- 9 Huchzermeyer C, Kremers J. Perifoveal L- and M-cone-driven temporal contrast sensitivities at different retinal illuminances. J Opt Soc Am A Opt Image Sci Vis 2016; 33: 1989-1998
- 10 Huchzermeyer C, Kremers J. Perifoveal S-cone and rod-driven temporal contrast sensitivities at different retinal illuminances. J Opt Soc Am A Opt Image Sci Vis 2017; 34: 171
- 11 Kremers J, Pangeni G. Electroretinographic responses to photoreceptor specific sine wave modulation. J Opt Soc Am A Opt Image Sci Vis 2012; 29: A306-A313
- 12 Pokorny J, Smithson H, Quinlan J. Photostimulator allowing independent control of rods and the three cone types. Vis Neurosci 2004; 21: 263-267
- 13 Puts MJH, Pokorny J, Quinlan J. et al. Audiophile hardware in vision science; the soundcard as a digital to analog converter. J Neurosci Methods 2005; 142: 77-81
- 14 Huchzermeyer C, Martins CMG, Nagy B. et al. Photoreceptor-specific light adaptation of critical flicker frequency in trichromat and dichromat observers. J Opt Soc Am A Opt Image Sci Vis 2018; 35: B106-B113
- 15 Huchzermeyer C, Fars J, Kremers J. Photoreceptor-Specific Loss of Perifoveal Temporal Contrast Sensitivity in Retinitis Pigmentosa. Transl Vis Sci Technol 2020; 9: 27
- 16 Huchzermeyer C, Horn F, Lämmer R. et al. Summation of Temporal L-Cone- and M-Cone-Contrast in the Magno- and Parvocellular Retino-Geniculate Systems in Glaucoma. Invest Ophthalmol Vis Sci 2021; 62: 17
- 17 Fars J, Pasutto F, Kremers J. et al. Perifoveal Cone- and Rod-Mediated Temporal Contrast Sensitivities in Stargardt Disease/Fundus Flavimaculatus. Invest Ophthalmol Vis Sci 2021; 62: 24
- 18 Scholl HP, Kremers J, Apfelstedt-Sylla E. et al. L- and M-cone driven ERGs are differently altered in Bestʼs macular dystrophy. Vision Res 2000; 40: 3159-3168
- 19 Scholl HPN, Kremers J, Vonthein R. et al. L- and M-cone-driven electroretinograms in Stargardtʼs macular dystrophy–fundus flavimaculatus. Invest Ophthalmol Vis Sci 2001; 42: 1380-1389
- 20 Scholl HPN, Kremers J. L- and M-cone driven large-field and multifocal electroretinograms in sector retinitis pigmentosa. Doc Ophthalmol 2003; 106: 171-181
- 21 Scholl HP, Kremers J. Large Phase Differences between L-Cone- and M-Cone-Driven Electroretinograms in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2000; 41: 3225-3233
- 22 Scholl HPN, Kremers J. Alterations of L- and M-cone driven ERGs in cone and cone – rod dystrophies. Vision Res 2003; 43: 2333-2344
- 23 Feigl B, Cao D, Morris CP. et al. Persons with age-related maculopathy risk genotypes and clinically normal eyes have reduced mesopic vision. Invest Ophthalmol Vis Sci 2011; 52: 1145-1150
- 24 Huchzermeyer C, Fars J, Stöhr H. et al. [New techniques for quantification of color vision in disorders of cone function: Cambridge color test and photoreceptor-specific temporal contrast sensitivity in patients with heterozygous RP1L1 and RPGR mutations]. Ophthalmologe 2021; 118: 144-153