Synthesis 2023; 55(04): 617-636
DOI: 10.1055/a-1941-8680
paper

Total Synthesis and Anti-inflammatory Activity of Stemoamide-Type Alkaloids Including Totally Substituted Butenolides and Pyrroles

Yasuki Soda
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
Yasukazu Sugiyama
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
Shunsei Sato
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
Kana Shibuya
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
Junya Saegusa
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
Tomoe Matagawa
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
Sayaka Kawano
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
b   Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
,
b   Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
,
Takeshi Oishi
c   School of Medicine, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
,
Kento Mori
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
,
a   Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
› Author Affiliations
This research was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT, 18K05127), the TOBE MAKI Scholarship Foundation, the JGC-S Scholarship Foundation, the Kato Memorial Bioscience Foundation, and the Amano Institute of Technology Foundation. Japan Society for the Promotion of Science (JSPS) fellowships [to M.Y. (15J05926) and Y. Sugiyama (21J21546)], and the Yoshida Scholarship Foundation (Y. Soda) are gratefully acknowledged.


Abstract

Totally substituted butenolide including two tetrasubstituted olefins is a distinct structural motif seen in Stemona alkaloids, but efficient methods for its synthesis are not well developed. As an ongoing program aimed at the collective total synthesis of the stemoamide group, we report a stereodivergent method to give either (E)- or (Z)-totally substituted butenolide from the same intermediate. While AgOTf­-mediated elimination via an E1-type mechanism results in the formation of the kinetic (Z)-tetrasubstituted olefin, subsequent TfOH-mediated isomerization gives the thermodynamic (E)-tetrasubstituted olefin. The pyrrole ring is another important structure found in Stemona alkaloids. The direct oxidation of pyrrolidine rings with MnO2 and careful purification gives the pyrrole groups without isomerization of the stereocenter in the lactone group. These two methods enabled us to synthesize a series of stemoamide-type alkaloids including tricyclic, tetracyclic, and pentacyclic frameworks. The anti-inflammatory activities by inhibition of iNOS expression in macrophage cell line RAW264.7 indicate that the most potent anti-inflammatory compounds without cytotoxicity are protostemonines, which consist of pentacyclic frameworks including the totally substituted butenolide.

Supporting Information



Publication History

Received: 22 August 2022

Accepted after revision: 13 September 2022

Accepted Manuscript online:
13 September 2022

Article published online:
17 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address: M. Yoritate, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

    • For reviews on Stemona alkaloids, see:
    • 2a Pilli RA, de Oliveira MC. F. Nat. Prod. Rep. 2000; 17: 11
    • 2b Greger H. Planta Med. 2006; 72: 99
    • 2c Alibés R, Figueredo M. Eur. J. Org. Chem. 2009; 2421
    • 2d Pilli RA, Rosso GB, de Oliveira MC. F. Nat. Prod. Rep. 2010; 27: 1908
    • 2e Greger H. Phytochem. Rev. 2019; 18: 463
    • 2f Iwata T, Shindo M. Heterocycles 2019; 98: 349
    • 2g Liu Y, Shen Y, Teng L, Yang L, Cao K, Fu Q, Zhang J. J. Ethnopharmacol. 2021; 265: 113112

      For isolation and structural determination of protostemonine (1) and isoprotostemonine (17), see:
    • 3a Irie H, Harada H, Ohno K, Mizutani T, Uyeo S. J. Chem. Soc. D 1970; 268
    • 3b Irie H, Ohno K, Osaki K, Taga T, Uyeo S. Chem. Pharm. Bull. 1973; 21: 451
    • 3c Ye Y, Xu R.-S. Chin. Chem. Lett. 1992; 3: 511
    • 3d Ye Y, Qin G.-W, Xu R.-S. Phytochemistry 1994; 37: 1205
    • 3e Kaltenegger E, Brem B, Mereiter K, Kalchhauser H, Kählig H, Hofer O, Vajrodaya S, Greger H. Phytochemistry 2003; 63: 803

      For biological activity of protostemonine (1), see:
    • 4a Yang X.-Z, Zhu J.-Y, Tang C.-P, Ke C.-Q, Lin G, Cheng T.-Y, Rudd JA, Ye Y. Planta Med. 2009; 75: 174
    • 4b Cheng Z, Yue L, Zhao W, Yang X, Shu G. Int. Immunopharmacol. 2015; 29: 798
    • 4c Huang S.-Z, Kong F.-D, Ma Q.-Y, Guo Z.-K, Zhou L.-M, Wang Q, Dai H.-F, Zhao Y.-X. J. Nat. Prod. 2016; 79: 2599
    • 4d Wu Y.-X, He H.-Q, Nie Y.-J, Ding Y.-H, Sun L, Qian F. Acta Pharmacol. Sin. 2018; 39: 85
    • 4e Song Y, Wu Y, Li X, Shen Y, Ding Y, Zhu H, Liu F, Yu K, Sun L, Qian F. Biochem. Pharmacol. 2018; 155: 198
    • 4f Wu Y, Nie Y, Huang J, Qiu Y, Wan B, Liu G, Chen J, Chen D, Pang Q. Int. Immunopharmacol. 2019; 77: 105964
  • 5 Greger proposes another classification based on biosynthetic considerations; see refs. 2b and 2e.

    • For synthesis of the totally substituted butenolides and application to total synthesis of natural products, see:
    • 6a Kende AS, Smalley TL. Jr, Huang H. J. Am. Chem. Soc. 1999; 121: 7431
    • 6b Velázquez F, Olivo HF. Org. Lett. 2002; 4: 3175
    • 6c Brüggemann M, McDonald AI, Overman LE, Rosen MD, Schwink L, Scott JP. J. Am. Chem. Soc. 2003; 125: 15284
    • 6d Huang P.-Q, Huang S.-Y, Gao L.-H, Mao Z.-Y, Chang Z, Wang A.-E. Chem. Commun. 2015; 51: 4576
    • 6e Huang X.-Z, Gao L.-H, Huang P.-Q. Nat. Commun. 2020; 11: 5314
    • 6f Huang Y.-Q, Huang X.-Z, Huang P.-Q. J. Org. Chem. 2021; 86: 2359
  • 7 For isolation of stemofoline (5) and isostemofoline (6), see: Irie H, Masaki N, Ohno K, Osaki K, Taga T, Uyeo S. J. Chem. Soc. D 1970; 1066
  • 8 For total synthesis of stemofoline (5) and isostemofoline (6), see ref. 6.
  • 9 For isolation of stemocurtisine (7), see: Mungkornasawakul P, Pyne SG, Jatisatienr A, Supyen D, Lie W, Ung AT, Skelton BW, White AH. J. Nat. Prod. 2003; 66: 980

    • For oxidation of the pyrrolidines to the pyrroles, see:
    • 10a ref. 3a.
    • 10b ref 3d.
    • 10c Noro T, Fukushima S, Ueno A, Miyase T, Iitaka Y, Saiki Y. Chem. Pharm. Bull. 1979; 27: 1495
    • 10d Bonnaud B, Bigg DC. H. Synthesis 1994; 465
    • 10e Wipf P, Spencer SR. J. Am. Chem. Soc. 2005; 127: 225

      For isolation of tuberostemonine (8), see:
    • 11a Suzuki K. J. Pharm. Soc. Jpn. 1934; 54: 573
    • 11b Schild H. Ber. Dtsch. Chem. Ges. B 1936; 69: 74
    • 11c Kondo H, Suzuki K, Satomi M. J. Pharm. Soc. Jpn. 1939; 59: 443
    • 11d Edwards OE, Feniak G. Can. J. Chem. 1962; 40: 2416
    • 11e Götz M, Bögri T, Gray AH, Strunz GM. Tetrahedron 1968; 24: 2631

      For isolation of bisdehydrotuberostemonine (9), see:
    • 12a Ye Y, Qin G.-W, Xu R.-S. Phytochemistry 1994; 37: 1201
    • 12b Lin W, Fu H. J. Chin. Pharm. Sci. 1999; 8: 1

      For total synthesis of tuberostemonine (8) and bisdehydrotuberostemonine (9), see:
    • 13a ref. 10e.
    • 13b Deng Y, Liang X, Wei K, Yang Y.-R. J. Am. Chem. Soc. 2021; 143: 20622

      For isolation of croomine (10) and didehydrocroomine (11), see:
    • 14a ref. 10c.
    • 14b Hu Z.-X, Tang H.-Y, Guo J, Aisa HA, Zhang Y, Hao X.-J. Tetrahedron 2019; 75: 1711

      For total synthesis of croomine (10), see:
    • 15a Williams DR, Brown DL, Benbow JW. J. Am. Chem. Soc. 1989; 111: 1923
    • 15b Martin SF, Barr KJ. J. Am. Chem. Soc. 1996; 118: 3299
    • 15c Martin SF, Barr KJ, Smith DW, Bur SK. J. Am. Chem. Soc. 1999; 121: 6990
  • 16 For isolation of stemoamide (12), see: Lin W.-H, Ye Y, Xu R.-S. J. Nat. Prod. 1992; 55: 571

    • For total synthesis of stemoamide (12), see:
    • 17a Williams DR, Reddy JP, Amato GS. Tetrahedron Lett. 1994; 35: 6417
    • 17b Kohno Y, Narasaka K. Bull. Chem. Soc. Jpn. 1996; 69: 2063
    • 17c Kinoshita A, Mori M. J. Org. Chem. 1996; 61: 8356
    • 17d Jacobi PA, Lee K. J. Am. Chem. Soc. 1997; 119: 3409
    • 17e Kinoshita A, Mori M. Heterocycles 1997; 46: 287
    • 17f Jacobi PA, Lee K. J. Am. Chem. Soc. 2000; 122: 4295
    • 17g Sibi MP, Subramanian T. Synlett 2004; 1211
    • 17h Olivo HF, Tovar-Miranda R, Barragán E. J. Org. Chem. 2006; 71: 3287
    • 17i Torssell S, Wanngren E, Somfai P. J. Org. Chem. 2007; 72: 4246
    • 17j Bates RW, Sridhar S. Synlett 2009; 1979
    • 17k Honda T, Matsukawa T, Takahashi K. Org. Biomol. Chem. 2011; 9: 673
    • 17l Wang Y, Zhu L, Zhang Y, Hong R. Angew. Chem. Int. Ed. 2011; 50: 2787
    • 17m Mi X, Wang Y, Zhu L, Wang R, Hong R. Synthesis 2012; 44: 3432
    • 17n Li Z, Zhang L, Qiu FG. Asian J. Org. Chem. 2014; 3: 52
    • 17o Nakayama Y, Maeda Y, Hama N, Sato T, Chida N. Synthesis 2016; 48: 1647
    • 17p Yoritate M, Takahashi Y, Tajima H, Ogihara C, Yokoyama T, Soda Y, Oishi T, Sato T, Chida N. J. Am. Chem. Soc. 2017; 139: 18386
    • 17q Yin X, Ma K, Dong Y, Dai M. Org. Lett. 2020; 22: 5001
    • 17r Siitonen JH, Csókás D, Pápai I, Pihko PM. Synlett 2020; 31: 1581
    • 17s Soda Y, Sugiyama Y, Yoritate M, Tajima H, Shibuya K, Ogihara C, Oishi T, Sato T, Chida N. Org. Lett. 2020; 22: 7502
    • 17t Guo Z, Bao R, Li Y, Li Y, Zhang J, Tang Y. Angew. Chem. Int. Ed. 2021; 60: 14545
    • 17u Cao F, Gao W, Wang X, Zhang Z, Yin G, Wang Y, Li Z, Shi T, Hou Y, Chen J, Wang Z. Org. Lett. 2021; 23: 6222
    • 17v Sugiyama Y, Soda Y, Yoritate M, Tajima H, Takahashi Y, Shibuya K, Ogihara C, Yokoyama T, Oishi T, Sato T, Chida N. Bull. Chem. Soc. Jpn. 2022; 95: 278
  • 18 For our approach using chemoselective assembly of five-membered building blocks, see refs. 17p, 17s, and 17v.
  • 19 Part of this work was published as a preliminary communication; see ref. 17s.
  • 20 Stemoamide (12) was prepared in 7 steps from commercially available ethyl 4-bromobutanoate; see ref. 17v.
  • 21 For isolation of protostemonamide (14), see ref. 4a.

    • For selected reviews on nucleophilic addition to amides, see:
    • 22a Seebach D. Angew. Chem. Int. Ed. 2011; 50: 96
    • 22b Murai T, Mutoh Y. Chem. Lett. 2012; 41: 2
    • 22c Sato T, Chida N. Org. Biomol. Chem. 2014; 12: 3147
    • 22d Pace V, Holzer W, Olofsson B. Adv. Synth. Catal. 2014; 356: 3697
    • 22e Volkov A, Tinnis F, Slagbrand T, Trillo P, Adolfsson H. Chem. Soc. Rev. 2016; 45: 6685
    • 22f Więcław MM, Stecko S. Eur. J. Org. Chem. 2018; 6601
    • 22g Sato T, Yoritate M, Tajima H, Chida N. Org. Biomol. Chem. 2018; 16: 3864
    • 22h Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem. Soc. Rev. 2018; 47: 7899
    • 22i Huang P.-Q. Acta Chim. Sin. 2018; 76: 357
    • 22j Matheau-Raven D, Gabriel P, Leitch JA, Almehmadi YA, Yamazaki K, Dixon DJ. ACS Catal. 2020; 10: 8880
    • 22k Ong DY, Chen J.-h, Chiba S. Bull. Chem. Soc. Jpn. 2020; 93: 1339
    • 22l Czerwiński PJ, Furman B. Front. Chem. 2021; 9: 655849

      For recent selected examples of nucleophilic addition to amides, see:
    • 23a Xia Q, Ganem B. Org. Lett. 2001; 3: 485
    • 23b Murai T, Mutoh Y, Ohta Y, Murakami M. J. Am. Chem. Soc. 2004; 126: 5968
    • 23c Murai T, Asai F. J. Am. Chem. Soc. 2007; 129: 780
    • 23d Xiao K.-J, Luo J.-M, Ye K.-Y, Wang Y, Huang P.-Q. Angew. Chem. Int. Ed. 2010; 49: 3037
    • 23e Shirokane K, Kurosaki Y, Sato T, Chida N. Angew. Chem. Int. Ed. 2010; 49: 6369
    • 23f Vincent G, Guillot R, Kouklovsky C. Angew. Chem. Int. Ed. 2011; 50: 1350
    • 23g Bélanger G, O’Brien G, Larouche-Gauthier R. Org. Lett. 2011; 13: 4268
    • 23h Bechara WS, Pelletier G, Charette AB. Nat. Chem. 2012; 4: 228
    • 23i Medley JW, Movassaghi M. Angew. Chem. Int. Ed. 2012; 51: 4572
    • 23j Xiao K.-J, Wang A.-E, Huang P.-Q. Angew. Chem. Int. Ed. 2012; 51: 8314
    • 23k Jakubec P, Hawkins A, Felzmann W, Dixon DJ. J. Am. Chem. Soc. 2012; 134: 17482
    • 23l Bonazzi S, Cheng B, Wzorek JS, Evans DA. J. Am. Chem. Soc. 2013; 135: 9338
    • 23m Jäkel M, Qu J, Schnitzer T, Helmchen G. Chem. Eur. J. 2013; 19: 16746
    • 23n Shirokane K, Wada T, Yoritate M, Minamikawa R, Takayama N, Sato T, Chida N. Angew. Chem. Int. Ed. 2014; 53: 512
    • 23o Szcześniak P, Stecko S, Staszewska-Krajewska O, Furman B. Tetrahedron 2014; 70: 1880
    • 23p Gregory AW, Chambers A, Hawkins A, Jakubec P, Dixon DJ. Chem. Eur. J. 2015; 21: 111
    • 23q Nakajima M, Sato T, Chida N. Org. Lett. 2015; 17: 1696
    • 23r Katahara S, Kobayashi S, Fujita K, Matsumoto T, Sato T, Chida N. J. Am. Chem. Soc. 2016; 138: 5246
    • 23s Huang P.-Q, Ou W, Han F. Chem. Commun. 2016; 52: 11967
    • 23t Huang P.-Q, Lang Q.-W, Hu X.-N. J. Org. Chem. 2016; 81: 10227
    • 23u Tan PW, Seayad J, Dixon DJ. Angew. Chem. Int. Ed. 2016; 55: 13436
    • 23v Sato M, Azuma H, Daigaku A, Sato S, Takasu K, Okano K, Tokuyama H. Angew. Chem. Int. Ed. 2017; 56: 1087
    • 23w Fuentes de Arriba ÁL, Lenci E, Sonawane M, Formery O, Dixon DJ. Angew. Chem. Int. Ed. 2017; 56: 3655
    • 23x ref. 17p.
    • 23y Xie L.-G, Dixon DJ. Chem. Sci. 2017; 8: 7492
    • 23z Xie L.-G, Dixon DJ. Nat. Commun. 2018; 9: 2841
    • 23aa Ou W, Han F, Hu X.-N, Chen H, Huang P.-Q. Angew. Chem. Int. Ed. 2018; 57: 11354
    • 23ab Takahashi Y, Yoshii R, Sato T, Chida N. Org. Lett. 2018; 20: 5705
    • 23ac Trillo P, Slagbrand T, Adolfsson H. Angew. Chem. Int. Ed. 2018; 57: 12347
    • 23ad Hiraoka S, Matsumoto T, Matsuzaka K, Sato T, Chida N. Angew. Chem. Int. Ed. 2019; 58: 4381
    • 23ae Takahashi Y, Sato T, Chida N. Chem. Lett. 2019; 48: 1138
    • 23af Trillo P, Adolfsson H. ACS Catal. 2019; 9: 7588
    • 23ag Ong DY, Fan D, Dixon DJ, Chiba S. Angew. Chem. Int. Ed. 2020; 59: 11903
    • 23ah ref. 17s.
    • 23ai Rogova T, Gabriel P, Zavitsanou S, Leitch JA, Duarte F, Dixon DJ. ACS Catal. 2020; 10: 11438
    • 23aj Katahara S, Sugiyama Y, Yamane M, Komiya Y, Sato T, Chida N. Org. Lett. 2021; 23: 3058
    • 23ak Yamazaki K, Gabriel P, Carmine GD, Pedroni J, Farizyan M, Hamlin TA, Dixon DJ. ACS Catal. 2021; 11: 7489
    • 23al Chen D.-H, Sun W.-T, Zhu C.-J, Lu G.-S, Wu D.-P, Wang A.-E, Huang P.-Q. Angew. Chem. Int. Ed. 2021; 60: 8827
    • 23am Gabriel P, Almehmadi YA, Wong ZR, Dixon DJ. J. Am. Chem. Soc. 2021; 143: 10828
    • 23an Matheau-Raven D, Dixon DJ. Angew. Chem. Int. Ed. 2021; 60: 19725
  • 24 For isolation of bisdehydroprotostemonine (18), see refs. 3c and 3d.

    • For selected total synthesis of other tetracyclic and pentacyclic stemoamide-type alkaloids, see:
    • 25a Williams DR, Fromhold MG, Earley JD. Org. Lett. 2001; 3: 2721
    • 25b Liu X.-K, Ye J.-L, Ruan Y.-P, Li Y.-X, Huang P.-Q. J. Org. Chem. 2013; 78: 35
    • 25c Ma K, Yin X, Dai M. Angew. Chem. Int. Ed. 2018; 57: 15209
    • 25d Hou Y, Shi T, Yang Y, Fan X, Chen J, Cao F, Wang Z. Org. Lett. 2019; 21: 2952

      For preparation of model lactone 31, see:
    • 26a Nemoto H, Nagai M, Fukumoto K. J. Org. Chem. 1985; 50: 2764
    • 26b Fujita M, Kitagawa O, Izawa H, Dobashi A, Fukaya H, Taguchi T. Tetrahedron Lett. 1999; 40: 1949
  • 27 For an example of bromination of butenolides, see: Sum F.-W, Weiler L. J. Org. Chem. 1979; 44: 1012
  • 28 For determination of the stereochemistry of the tetrasubstituted olefins in 37, see the Supporting Information.
  • 29 The AgOTf-mediated elimination of bromides 38 in the absence of 3 Å molecular sieves indicated partial formation of hemiacetals such as 51 shown in Figure 3. Hemiacetal 51 was separately obtained by hydration of 38d in THF/H2O (1:1) at 70 °C.
  • 30 Although oxidative cleavage of model compounds 37, protostemonine (1), and isoprotostemonine (17) was not observed, all compounds including the totally substituted butenolides were stored in a glovebox.
  • 31 The Gibbs free energy of (Z)-37 is 0.4 kcal/mol lower than that of (E)-37, which is consistent with the experimental trend for the isomerization; see the Supporting Information. The Huang group proposed the preferential formation of the (Z)-isomer without the methyl group might be understood due to repulsion by electron pair–electron pair interaction of the (E)-isomer; see ref. 6f.

    • For isolation of stemonine (41), see:
    • 32a Suzuki K. J. Pharm. Soc. Jpn. 1929; 49: 457
    • 32b Suzuki K. J. Pharm. Soc. Jpn. 1931; 51: 419
    • 32c Koyama H, Oda K. J. Chem. Soc. B 1970; 1330

      For total synthesis of stemonine (41), see:
    • 33a Williams DR, Shamim K, Reddy JP, Amato GS, Shaw SM. Org. Lett. 2003; 5: 3361
    • 33b refs. 17p, 17t, and 17v.
  • 34 For epimerization of the pyrrole-type alkaloids, see refs. 25c and 13b.
  • 35 For isolation of didehydrostemonine (42), see: Changying Z, Jun L, Haimin L, Hongzheng F, Wenhan L. J. Chin. Pharm. Sci. 2000; 9: 113
    • 36a Motoyama Y, Aoki M, Takaoka N, Aoto R, Nagashima H. Chem. Commun. 2009; 1574

    • Curtis reported the synthesis of siloxane oligomer using (Me2HSi)2O and a catalytic amount of the Vaska complex [IrCl(CO)(PPh3)2]; see:
    • 36b Greene J, Curtis MD. J. Am. Chem. Soc. 1977; 99: 5176
    • 37a Rosso GB, Pilli RA. Tetrahedron Lett. 2006; 47: 185
    • 37b Funakoshi Y, Miura T, Murakami M. Org. Lett. 2016; 18: 6284

      For selected reviews on iNOS, see:
    • 38a Kleinert H, Pautz A, Linker K, Schwarz PM. Eur. J. Pharmacol. 2004; 500: 255
    • 38b Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Nitric Oxide 2010; 23: 75
  • 39 For examples of LPS-induced iNOS expression, see: Jin Y, Liu Y, Nelin LD. J. Biol. Chem. 2015; 290: 2099
  • 40 For iNOS expression, bisdehydroprotostemonine (18) and isobisdehydroprotostemonine (19) were examined as a diastereomeric mixture [18 (β-H)/epi-18 (α-H) = 2.5:1, 19 (β-H)/epi-19 (α-H) = 2.5:1] because they are prone to undergo quick epimerization at C18; see the experimental.
  • 41 MacroModel . Schrödinger, LLC; New York (NY, USA): 2021
  • 42 Gaussian 16, Revision C.01 . Gaussian, Inc; Wallingford (CT, USA): 2019
    • 43a Simizu S, Imoto M, Umezawa K. Biosci., Biotechnol., Biochem. 1994; 58: 1549
    • 43b Komai K, Niwa Y, Sasazawa Y, Simizu S. FEBS Lett. 2015; 589: 738
    • 43c Morishita S, Suzuki T, Niwa Y, Dohmae N, Simizu S. Oncol. Lett. 2017; 14: 2537
    • 44a Tamura Y, Simizu S, Muroi M, Takagi S, Kawatani M, Watanabe N, Osada H. Oncogene 2009; 28: 107
    • 44b Miura K, Kawano S, Suto T, Sato T, Chida N, Simizu S. Bioorg. Med. Chem. 2021; 34: 116041
  • 45 Miyazaki S, Sasazawa Y, Mogi T, Suzuki T, Yoshida K, Dohmae N, Takao K, Simizu S. FEBS Lett. 2016; 590: 1163
  • 46 Katsuyama S, Sugino K, Sasazawa Y, Nakano Y, Aono H, Morishita K, Kawatani M, Umezawa K, Osada H, Simizu S. FEBS Lett. 2016; 590: 1152