Subscribe to RSS
DOI: 10.1055/a-1942-6510
Neue Technologien in der Mikrochirurgie: Potential, Indikationen und ökonomische Aspekte – Konsensus-Bericht der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie der peripheren Nerven und Gefäße (DAM)
New Technologies in Microsurgery: Potential, Indications and Economical Aspects – Report of the Consensus Workshop of the German-Speaking Society for Microsurgery of Peripheral Nerves and Vessels (DAM)Zusammenfassung
Kürzlich haben mehrere neue Technologien zur Unterstützung von Mikrochirurg:innen eine europäische Marktzulassung erhalten. Der vorliegende Artikel fasst die Eindrücke eines Expertenpanels zur Einordnung des Potentials neuer Technologien im Hinblick auf Nutzen für den Operateur, spezifische Indikationen und ökonomische Aspekte während der 42. Jahrestagung der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie der peripheren Nerven und Gefäße (DAM) in Graz, Österreich zusammen und diskutiert diese. Das Expertengremium befasste sich im Allgemeinen mit den Grundsätzen und Voraussetzung der erfolgreichen Etablierung neuer Technologien und im Speziellen mit neuartigen optischen und robotischen Systemen. Dazu wurde die aktuelle wissenschaftliche Literatur aufgearbeitet sowie anfängliche klinische Erfahrungswerte im Rahmen von Fallserien und retrospektiven Studien durch die Mitglieder des Expertenpaneels präsentiert. In der sich anschließenden Diskussion wurde herausgearbeitet, dass zunächst eine Identifizierung von Patienten-Untergruppen notwendig sein wird, bei denen mit dem Einsatz der neuen Technologien am ehesten ein klinischer Nutzen zu erzielen sei. Da bereits eine klinische Zulassung einiger Systeme gegeben ist, kann bei der unmittelbaren klinischen Anwendung eine Vorgehensweise von möglichst einfachem Einsatz hin zu immer feineren Anwendungen, also von der Mikro- bis hin zur Supermikrochirurgie, hin entwickelt werden. Eine Finanzierung kostenintensiver Systeme sei zunächst vermutlich nicht über den Erlös aus der Regelversorgung, sondern nur durch Fördergelder oder subventionierte klinische Studien möglich. In einer abschließenden Befragung sieht die Mehrheit der Sitzungsteilnehmenden die Notwendigkeit einer Preisreduktion sowohl der Technologien zur Visualisierung als auch der Operationsrobotik, um eine flächendeckende klinische Etablierung zu ermöglichen. Ebenfalls eine Mehrheit der Teilnehmenden würde bei klinischem Einsatz eine Kombination aus Exoskop bzw. robotischem Mikroskop und einem Operationsroboter bevorzugen. Die vorliegende Konsensusarbeit adressiert die Entwicklung einer Strategie zur effektiven Etablierung neuer Technologien, die die operative Qualität ausgewählter Eingriffe weiter erhöhen soll.
Abstract
Recently, several new technologies to support microsurgeons have received European market approval. This article summarizes and discusses the impressions of an expert panel to classify the potential of new technologies in terms of benefits for the surgeon, specific indications and economic aspects during the 42nd Annual Meeting of the German-speaking Working Group for Microsurgery of Peripheral Nerves and Vessels (DAM) in Graz, Austria. In general, the expert panel addressed the principles and prerequisite for the successful establishment of new technologies and, in particular, novel optical and robotic systems. For this purpose, the current scientific literature was reviewed and initial clinical experience in the context of case series and retrospective studies was presented by the members of the expert panel. In the ensuing discussion, it was pointed out that it will first be necessary to identify patient subgroups in which the use of the new technologies is most likely to achieve a clinical benefit. Since clinical approval has already been granted for some systems, an approach can be developed for immediate clinical application from the simplest possible use to ever finer applications, i. e. from microsurgery to supermicrosurgery. Initially, funding for cost-intensive systems would presumably not be possible through revenue from standard care, but only through grants or subsidized clinical trials. In a final survey, the majority of meeting participants see the need for a price reduction of both visualization and surgical robotics technologies to enable widespread clinical establishment. Likewise, a majority of participants would prefer a combination of an exoscope or robotic microscope and a surgical robot for clinical use. The present consensus work addresses the development of a strategy for the effective establishment of new technologies, which should further increase the surgical quality of selected interventions.
Schlüsselwörter
Supermikrochirurgie - Roboter-assistierte Chirurgie - Robotik - freie Lappenplastiken - Mikorchirurgie der LymphgefäßePublication History
Received: 10 April 2022
Accepted: 25 August 2022
Article published online:
25 October 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Baumeister RG, Seifert J, Hahn D. Autotransplantation Of Lymphatic Vessels. Lancet. 1981; DOI: 10.1016/S0140-6736(81)90723-6.
- 2 Hirche C, Engel H, Engel H. et al. Lympho-reconstructive microsurgery for secondary lymphedema: Consensus of the German-Speaking Society for Microsurgery of Peripheral Nerves and Vessels (DAM) on indication, diagnostic and therapy by lymphovenous anastomosis (LVA) and vascularized lymph no. Handchirurgie Mikrochirurgie Plast Chir 2019; DOI: 10.1055/a-0874-2212.
- 3 Brown E, Suh HP, Han HH. et al. Best New Flaps and Tips for Success in Microsurgery. Plast Reconstr Surg 2020; DOI: 10.1097/PRS.0000000000007331.
- 4 Hong JPJ, Song S, Suh HSP. Supermicrosurgery: Principles and applications. J Surg Oncol 2018; DOI: 10.1002/jso.25243.
- 5 Mihara M, Hayashi Y, Iida T. et al. Instruments for supermicrosurgery in Japan. Plast Reconstr Surg 2012; DOI: 10.1097/prs.0b013e31823af16b.
- 6 Tamai S. History of microsurgery from the beginning until the end of the 1970s. In: Microsurgery. 1993. DOI: 10.1002/micr.1920140105
- 7 Maruccia M, Fatigato G, Elia R. et al. Microvascular coupler device versus hand-sewn venous anastomosis: A systematic review of the literature and data meta-analysis. Microsurgery 2020; DOI: 10.1002/micr.30585.
- 8 Daigeler A, Schubert C, Hirsch T. et al. Colour duplex sonography and Power-Duplex in Perforator Surgery – Improvement of patients safety by efficient planning. Handchirurgie Mikrochirurgie Plast Chir 2018; DOI: 10.1055/s-0043-118597.
- 9 Karinja SJ, Lee BT. Advances in flap monitoring and impact of enhanced recovery protocols. J Surg Oncol 2018; DOI: 10.1002/jso.25179.
- 10 Ono S, Hayashi H, Ohi H. et al. Imaging Studies for Preoperative Planning of Perforator Flaps: An Overview. Clin Plast Surg 2017; DOI: 10.1016/j.cps.2016.09.004.
- 11 Schmauss D, Beier JP, Eisenhardt SU. et al. Der sichere Lappen – Präoperatives Gefäß-Mapping und intraoperative Perfusionsmessung zur Reduktion der lappenbedingten Morbidität. Handchirurgie · Mikrochirurgie · Plast Chir 2019; 51: 410-417 DOI: 10.1055/a-0987-0118.
- 12 Navarra G, Pozza E, Occhionorelli S. et al. One-wound laparoscopic cholecystectomy. Br J Surg 1997; DOI: 10.1002/bjs.1800840536.
- 13 Falk V, Walther T, Autschbach R. et al. Robot-assisted minimally invasive solo mitral valve operation. J Thorac Cardiovasc Surg 1998; DOI: 10.1016/S0022-5223(98)70295-8.
- 14 van der Hulst R, Sawor J, Bouvy N. Microvascular anastomosis: is there a role for robotic surgery?. J Plast Reconstr Aesthetic Surg 2007; DOI: 10.1016/j.bjps.2006.05.011.
- 15 Choi JH, Song SY, Park HS. et al. Robotic DIEP Flap Harvest through a Totally Extraperitoneal Approach Using a Single-Port Surgical Robotic System. Plast Reconstr Surg 2021; DOI: 10.1097/PRS.0000000000008181.
- 16 Selber JC. The Robotic DIEP Flap. Plast Reconstr Surg 2020; DOI: 10.1097/PRS.0000000000006529.
- 17 Gundlapalli VS, Ogunleye AA, Scott K. et al. Robotic-assisted deep inferior epigastric artery perforator flap abdominal harvest for breast reconstruction: A case report. Microsurgery 2018; DOI: 10.1002/micr.30297.
- 18 Stevenson TR, Rubin JM, Herzenberg JE. Vascular patency of fibular free graft: Assessment by Doppler color-flow imager: A case report. J Reconstr Microsurg 1988; DOI: 10.1055/s-2007-1006952.
- 19 Blondeel PN, Beyens G, Verhaeghe R. et al. Doppler flowmetry in the planning of perforator flaps. Br J Plast Surg 1998; DOI: 10.1016/S0007-1226(98)80010-6.
- 20 Giunta RE, Geisweid A, Feller AM. The value of preoperative doppler sonography for planning free perforator flaps. Plast Reconstr Surg 2000; DOI: 10.1097/00006534-200006000-00011.
- 21 Thomas B, Haug V, Falkner F. et al. A single-center retrospective comparison of Duplex ultrasonography versus audible Doppler regarding anterolateral thigh perforator flap harvest and operative times. Microsurgery 2022; DOI: 10.1002/micr.30775.
- 22 Masia J, Clavero JA, Larrañaga JR. et al. Multidetector-row computed tomography in the planning of abdominal perforator flaps. J Plast Reconstr Aesthetic Surg 2006; DOI: 10.1016/j.bjps.2005.10.024.
- 23 Colakoglu S, Tebockhorst S, Freedman J. et al. CT angiography prior to DIEP flap breast reconstruction: a randomized controlled trial. J Plast Reconstr Aesthetic Surg 2021; DOI: 10.1016/j.bjps.2021.05.050.
- 24 Ngaage LM, Oni G, Di Pace B. et al. The effect of CT angiography and venous couplers on surgery duration in microvascular breast reconstruction: A single operator’s experience. Gland Surg 2018; DOI: 10.21037/gs.2018.07.11.
- 25 Kiely J, Kumar M, Wade RG. The accuracy of different modalities of perforator mapping for unilateral DIEP flap breast reconstruction: A systematic review and meta-analysis. J Plast Reconstr Aesthetic Surg 2021; DOI: 10.1016/j.bjps.2020.12.005.
- 26 Hauck T, Arkudas A, Horch RE. et al. The third dimension in perforator mapping – Comparison of Cinematic Rendering and maximum intensity projection in abdominal-based autologous breast reconstruction. J Plast Reconstr Aesthetic Surg 2021; DOI: 10.1016/j.bjps.2021.09.011.
- 27 Ide S, Urikura A, Yoshida T. et al. Ultrahigh-Resolution Computed Tomography Improves Preoperative Computed Tomography Angiography for Deep Inferior Epigastric Artery Perforator Flap Reconstruction. J Comput Assist Tomogr 2021; DOI: 10.1097/rct.0000000000001235.
- 28 Dortch J, Forte AJ, Bolan C. et al. Preoperative Analysis of Venous Anatomy Before Deep Inferior Epigastric Perforator Free-Flap Breast Reconstruction Using Ferumoxytol-enhanced Magnetic Resonance Angiography. Ann Plast Surg 2018; DOI: 10.1097/sap.0000000000001421.
- 29 Yang X, Miller MJ, Friel HT. et al. Perforator phase contrast angiography of deep inferior epigastric perforators a better preoperative imaging tool for flap surgery than computed tomographic angiography?. Invest Radiol 2017; DOI: 10.1097/RLI.0000000000000348.
- 30 Nischwitz SP, Luze H, Schellnegger M. et al. Thermal, hyperspectral and laser doppler imaging: Non-invasive tools for detection of the deep inferior epigastric artery perforators – a prospective comparison study. J Pers Med 2021; DOI: 10.3390/jpm11101005.
- 31 Parmeshwar N, Sultan SM, Kim EA. et al. A Systematic Review of the Utility of Indocyanine Angiography in Autologous Breast Reconstruction. Ann Plast Surg 2021; DOI: 10.1097/SAP.0000000000002576.
- 32 Thiessen FEF, Tondu T, Vermeersch N. et al. Dynamic infrared thermography (DIRT) in Deep Inferior Epigastric Perforator (DIEP) flap breast reconstruction: Standardization of the measurement set-up. Gland Surg 2019; DOI: 10.21037/gs.2019.12.09.
- 33 Masia J, Olivares L, Koshima I. et al. Barcelona consensus on supermicrosurgery. J Reconstr Microsurg 2014; DOI: 10.1055/s-0033-1354742.
- 34 Leal Ghezzi T, Campos Corleta O. 30 Years of Robotic Surgery. World J Surg 2016; DOI: 10.1007/s00268-016-3543-9.
- 35 van Mulken TJM, Schols RM, Qiu SS. et al. Robotic (super) microsurgery: Feasibility of a new master-slave platform in an in vivo animal model and future directions. J Surg Oncol 2018; DOI: 10.1002/jso.25195.
- 36 Van Mulken TJM, Boymans CAEM, Schols RM. et al. Preclinical experience using a new robotic system created for microsurgery. Plast Reconstr Surg 2018; DOI: 10.1097/PRS.0000000000004939.
- 37 van Mulken TJM, Schols RM, Scharmga AMJ. et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun 2020; DOI: 10.1038/s41467-019-14188-w.
- 38 Enzinger S. Potenzial der Robotik in der Mikrochirurgie: Erfahrung mit dem Symani Surgical System. In: 42. Jahrestagung Deutschsprachige Arbeitsgemeinschaft Für Mikrochirurgie Der Peripheren Nerven Und Gefäße. 2021
- 39 Lindenblatt N, Grünherz L, Wang A. et al. Early Experience Using a New Robotic Microsurgical System for Lymphatic Surgery. Plast Reconstr Surg – Glob Open 2022; 10: e4013 DOI: 10.1097/GOX.0000000000004013.
- 40 Persönliche Kommunikation MMI, Pisa, Italien (11.02.2022)
- 41 Langer DJ, White TG, Schulder M. et al. Advances in Intraoperative Optics: A Brief Review of Current Exoscope Platforms. Oper Neurosurg 2020; DOI: 10.1093/ons/opz276.
- 42 Mamelak AN, Danielpour M, Black KL. et al. A high-definition exoscope system for neurosurgery and other microsurgical disciplines: Preliminary report. Surg Innov 2008; DOI: 10.1177/1553350608315954.
- 43 Mamelak AN, Nobuto T, Berci G. Initial clinical experience with a high-definition exoscope system for microneurosurgery. Neurosurgery 2010; DOI: 10.1227/01.NEU.0000372204.85227.BF.
- 44 De Virgilio A, Mercante G, Gaino F. et al. Preliminary clinical experience with the 4 K3-dimensional microvideoscope (VITOM 3D) system for free flap head and neck reconstruction. Head Neck 2020; DOI: 10.1002/hed.25979.
- 45 De Virgilio A, Iocca O, Di Maio P. et al. Free flap microvascular anastomosis in head and neck reconstruction using a 4 K three-dimensional exoscope system (VITOM 3D). Int J Oral Maxillofac Surg 2020; DOI: 10.1016/j.ijom.2020.01.022.
- 46 Ahmad FI, Mericli AF, DeFazio MV. et al. Application of the ORBEYE three-dimensional exoscope for microsurgical procedures. Microsurgery 2020; DOI: 10.1002/micr.30547.
- 47 Rösler J, Georgiev S, Roethe AL. et al. Clinical implementation of a 3D4K-exoscope (Orbeye) in microneurosurgery. Neurosurg Rev 2021; DOI: 10.1007/s10143-021-01577-3.
- 48 Hafez A, Haeren RHL, Dillmann J. et al. Comparison of Operating Microscope and Exoscope in a Highly Challenging Experimental Setting. In: World Neurosurgery 2021; DOI: 10.1016/j.wneu.2020.12.093.
- 49 Zhang H, Wong PY, Magos T. et al. Use of narrow band imaging and 4 K technology in otology and neuro-otology: preliminary experience and feasibility study. Eur Arch Oto-Rhino-Laryngology 2018; DOI: 10.1007/s00405-017-4783-5.
- 50 Schär M, Röösli C, Huber A. Preliminary experience and feasibility test using a novel 3D virtual-reality microscope for otologic surgical procedures. Acta Otolaryngol 2021; DOI: 10.1080/00016489.2020.1816658.
- 51 Riepl R, Greve J, Schild LR. et al. Application of a new computer-assisted robotic visualization system in cochlear implantation – Proof of concept. Int J Med Robot Comput Assist Surg 2021; DOI: 10.1002/rcs.2301.
- 52 Boehm F, Schuler PJ, Riepl R. et al. Performance of microvascular anastomosis with a new robotic visualization system: proof of concept. J Robot Surg 2021; DOI: 10.1007/s11701-021-01294-5.
- 53 Scaglioni MF, Meroni M, Fritsche E. et al. Use of the<scp>BHS</scp>robotic scope to perform lymphovenous anastomosis. Microsurgery 2021; 41: 298-299 DOI: 10.1002/micr.30704.
- 54 Persönliche Kommunikation BHS, Innsbruck, Österreich (11.02.2022)
- 55 Raap U. Roboter-assistierte Chirurgie in Deutschland etabliert: Installation des 200sten da Vinci-Chirurgiesystems und über 200.000 Eingriffe https://www.presseportal.de/pm/135649/4967458Published 2021
- 56 Prete FP, Pezzolla A, Prete F. et al. Robotic Versus Laparoscopic Minimally Invasive Surgery for Rectal Cancer. Ann Surg 2018; DOI: 10.1097/sla.0000000000002523.
- 57 McCulloch P, Cook JA, Altman DG. IDEAL Group. et al. IDEAL framework for surgical innovation 1: the idea and development stages. BMJ 2013; DOI: 10.1136/bmj.f3012.
- 58 Everett M. Rogers. Diffusion of Innovation. 4. Auflage. New York NY: Free Press; 1995
- 59 Schaverien MV, Ludman CN, Neil-Dwyer J. et al. Contrast-enhanced magnetic resonance angiography for preoperative imaging of deep inferior epigastric artery perforator flaps: Advantages and disadvantages compared with computed tomography angiography: A United Kingdom perspective. Ann Plast Surg 2011; DOI: 10.1097/SAP.0b013e3181fab9ea.
- 60 To C, Rees-Lee JE, Gush RJ. et al. Intraoperative Tissue Perfusion Measurement by Laser Speckle Imaging: A Potential Aid for Reducing Postoperative Complications in Free Flap Breast Reconstruction. Plast Reconstr Surg 2019; DOI: 10.1097/PRS.0000000000005223.