Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(05): 765-772
DOI: 10.1055/a-1944-9718
DOI: 10.1055/a-1944-9718
paper
Visible-Light-Induced Aerobic Oxidation of Tertiary Silanes to Silanols using Molecular Oxygen as an Oxidant
This work was financially supported by grants from the Science and Technology Project of Yunnan Province (202001AU070005, 2017ZE027), the Xingdian Talent Support Program, and grants from the Foundational Project of China Tobacco Yunnan Industrial Co., Ltd. (2020YL03, 2021JC03, 2021JC04). We also thank financially support from Yunnan Key Laboratory of Tobacco Chemistry and R&D Center of China Tobacco Yunnan Industry Co., Ltd (No. 2020539200340212).
Abstract
The photocatalyzed synthesis of silanols from tertiary silanes has been carried out using eosin Y under air. This is a metal-free method that uses a low catalyst loading, atmospheric oxygen as the oxidant, and visible-light conditions (blue light).
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1944-9718.
- Supporting Information
Publication History
Received: 28 July 2022
Accepted after revision: 15 September 2022
Accepted Manuscript online:
15 September 2022
Article published online:
31 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lickiss PD. In Advances in Inorganic Chemistry, Vol. 42. Sykes AG. Academic Press; London: 1995: 147-262
- 1b Colvin EW. In Silicon in Organic Synthesis . Colvin EW. Academic Press; London: 1988
- 1c Murugavel R, Walawalkar MG, Dan M, Roesky HW, Rao CN. R. Acc. Chem. Res. 2004; 37: 763
- 1d Zhou Q, Yan S, Han CC, Xie P, Zhang R. Adv. Mater. 2008; 20: 2970
- 1e Chandrasekhar V, Boomishankar R, Nagendran S. Chem. Rev. 2004; 104: 5847
- 1f Lorenz C, Schubert U. Chem. Ber. 1995; 128: 1267
- 1g Pouget E, Tonnar J, Lucas P, Lacroix-Desmazes P, Ganachaud F, Boutevin B. Chem. Rev. 2010; 110: 1233
- 2a Pietschnig R. In Main Group Strategies towards Functional Hybrid Materials . Baumgartner T, Jäkle F. Wiley–VCH; Weinheim: 2017: 141-162
- 2b Rogers SD, Dorsey JG. J. Chromatogr. A 2000; 892, 57
- 2c Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
- 2d Tacke R. In Organosilicon and Bioorganosilicon Chemistry. Wiley; New York: 1985
- 3a Jeon M, Han J, Park J. ACS Catal. 2012; 2: 1539
- 3b Chandrasekhar V, Boomishankar R, Nagendran S. Chem. Rev. 2004; 104: 5847
- 3c Rochow EG, Gilliam WF. J. Am. Chem. Soc. 1941; 63: 798
- 3d Cella JA, Carpenter JC. J. Organomet. Chem. 1994; 480: 23
- 4a Duffaut N, Calas R, Macé J.-C. Bull. Chem. Soc. Fr. 1959; 1971
- 4b Lickiss PD, Lucas R. J. Organomet. Chem. 1995; 521: 229
- 4c Valliant-Saunders K, Gunn E, Shelton GR, Hrovat DA, Borden WT, Mayer JM. Inorg. Chem. 2007; 46: 5212
- 4d Adam W, Mello R, Curci R. Angew. Chem., Int. Ed. Engl. 1990; 29: 890
- 4e Sommer LH, Ulland LA, Parker GA. J. Am. Chem. Soc. 1972; 94: 3469
- 4f Cavicchioli M, Montanari V, Resnati G. Tetrahedron Lett. 1994; 35: 6329
- 4g Spialter L, Austin JD. J. Am. Chem. Soc. 1965; 87: 4406
- 4h Spialter L, Pazdernik L, Bernstein S, Swansiger WA, Buell GR, Freeburger ME. J. Am. Chem. Soc. 1971; 93: 5682
- 5a Shi M, Nicholas KM. J. Chem. Res. 1997; 400
- 5b Schubert U, Lorenz C. Inorg. Chem. 1997; 36: 1258
- 5c Ison EA, Corbin RA, Abu-Omar MM. J. Am. Chem. Soc. 2005; 127: 11938
- 5d Lee M, Ko S, Chang S. J. Am. Chem. Soc. 2000; 122: 12011
- 5e Barnes GH, Daughenbaugh NE. J. Org. Chem. 1966; 31: 885
- 5f Lee Y, Seomoon D, Kim S, Han H, Chang S, Lee PH. J. Org. Chem. 2004; 69: 1741
- 5g Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Commun. 2009; 5302
- 5h Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer Yamamoto Y, Chen M, Zhang W, Inoue A. Angew. Chem. Int. Ed. 2010; 49: 10093
- 5i John J, Gravel E, Hagege A, Li H, Gacoin T, Doris E. Angew. Chem. Int. Ed. 2011; 50: 7533
- 5j Kikukawa Y, Kuroda Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 2434
- 5k Adam W, Corma A, García H, Weichold O. J. Catal. 2000; 196: 339
- 5l Adam W, Garcia H, Mitchell CM, Saha-Moller CR, Weichold O. Chem. Commun. 1998; 2609
- 5m Adam W, Mitchell CM, Saha-Moller CR, Weichold O. J. Am. Chem. Soc. 1999; 121: 2097
- 5n Adam W, Saha-Moller CR, Weichold O. J. Org. Chem. 2000; 65: 2897
- 5o Ishimoto R, Kamata K, Mizuno N. Angew. Chem. Int. Ed. 2009; 48: 8900
- 5p Limnios D, Kokotos CG. ACS Catal. 2013; 3: 2239
- 6a Cheung KP. S, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543
- 6b Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
- 7 Lv H, Laishram RD, Chen J, Khan R, Zhu Y, Wu S, Zhang J, Liu X, Fan B. Chem. Commun. 2021; 57: 3660
- 8a Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
- 8b Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
- 8c Amos SG. E, Garreau M, Buzzetti L, Waser J. Beilstein J. Org. Chem. 2020; 16: 1163
- 8d Srivastava V, Singh PP. RSC Adv. 2017; 7: 31377
- 9a Yu W.-L, Luo Y.-C, Yan L, Liu D, Wang Z.-Y, Xu P.-F. Angew. Chem. 2019; 131: 11057
- 9b Wang J, Li B, Liu L.-C, Jiang C, He T, He W. Sci. China Chem. 2018; 12: 1594
- 10 Fan X, Xiao P, Jiao Z, Yang T, Dai X, Xu W, Tan JD, Cui G, Su H, Fang W, Wu J. Angew. Chem. Int. Ed. 2019; 58: 12580
- 11 Zhang Y, Ye C, Li S, Ding A, Gu G, Guo H. RSC Adv. 2017; 7: 13240
- 12 Fan X.-Z, Rong J.-W, Wu H.-L, Zhou Q, Deng H.-P, Tan JD, Xue C.-W, Wu L.-Z, Tao H.-R, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see: