CC BY-NC-ND 4.0 · Organic Materials 2022; 4(04): 277-280
DOI: 10.1055/a-1945-0582
Supramolecular Chemistry
Short Communication

Expansion and Compression of a Helicate with Central Diol Units as Stereocontrolling Moieties

Saskia Grüninger
a   RWTH Aachen University, Institut für Organische Chemie, Landoltweg 1, 52074 Aachen, Germany
,
Christian Mevissen
a   RWTH Aachen University, Institut für Organische Chemie, Landoltweg 1, 52074 Aachen, Germany
,
b   University of Jyvaskyla, Department of Chemistry, P. O. Box 35, Jyväskylä 40014, Finland
,
b   University of Jyvaskyla, Department of Chemistry, P. O. Box 35, Jyväskylä 40014, Finland
,
a   RWTH Aachen University, Institut für Organische Chemie, Landoltweg 1, 52074 Aachen, Germany
› Author Affiliations


Abstract

The dicatechol ester ligand 2-H4 forms the compressed helicate Li4[(2)3 Ti2] which upon removal of the internally bound lithium cations expands. In the compressed form, the chiral diol units control the stereochemistry of the complex which is lost upon expansion of the system.



Publication History

Received: 29 June 2022

Accepted after revision: 30 August 2022

Accepted Manuscript online:
15 September 2022

Article published online:
13 December 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Goswami A, Saha S, Biswas PK, Schmittel M. Chem. Rev. 2020; 120: 125
    • 1b Balzani V, Venturi M, Credi A. Molecular Devices and Machines. Wiley/VCH; Weinheim: 2003
    • 1c Goulet-Hanssens A, Eisenreich F, Hecht S. Adv. Mater. 2020; 32: 1905966
    • 2a Chen X, Gerger TM, Räuber C, Raabe G, Göb C, Oppel IM, Albrecht M. Angew. Chem. Int. Ed. 2018; 57: 11817
    • 2b Albrecht M. Eur. J. Inorg. Chem. 2020; 2020: 2227
    • 3a Miwa K, Furusho Y, Yashima E. Nat. Chem. 2010; 2: 444
    • 3b See also for comparison: Harada K, Sekiya R, Haino T. Chem. Eur. J. 2020; 26: 5810
  • 4 See for comparison: Mevissen C, Kwamen ACN, Himmel L, Chen X, Brückner M, Huda S, Göb C, Jenniches J, Oppel I, Ward JS, Rissanen K, Albrecht M. Eur. J. Org. Chem. 2020; 2020: 5161
  • 5 Ligand 2-H4 (28.2 mg, 0.058 mmol, 3.0 equiv.) was dissolved in dichloromethane (30 mL). After adding titanium (IV) oxybisacetylacetonate (10.2 mg, 0.039 mmol, 2.0 equiv.) and lithium carbonate (2.9 mg, 0.039 mmol, 2.0 equiv.), the reaction mixture was stirred for 24 h. Upon completion, the solvent was evaporated to afford Li4[(2)3 Ti2] (yield = quant.) as a red solid. 1H NMR (600 MHz, DMSO-d6): δ = 6.97 (m, 5 H), 6.50 (m, 6 H), 6.41 (m, 6 H), 4.18 (m, 6 H), 4.09 (t, J = 11.1 Hz, 3 H), 3.95 (t, J = 10.7 Hz, 4 H), 3.24–3.20 (m, 9 H), 3.17 (m, 6 H), 3.08 (t, J = 6.4 Hz, 3 H), 3.01 (d, J = 6.0 Hz, 3 H), 2.94 (d, J = 12.3 Hz, 4 H), 2.89 (d, J = 12.0 Hz, 4 H) ppm. Signals not listed are overlapping and cannot be assigned. IR (KBr): ν̃ (cm−1) = 3369, 2923, 2862, 2451, 2290, 2207, 2157, 2076, 1923, 1676, 1593, 1561, 1444, 1373, 1294, 1252, 1213, 1129, 1064, 1037, 984, 801, 743, 681. ESI-MS: m/z: calculated for C66H66 Li3O66 Ti2 ([M – Li]): 1551.2778; found: 1551.2829. Elemental analysis: calculated for C66H66 Li4O66 Ti2: C: 50.86‍%, H: 4.27‍%; found: C: 48.93‍%, H: 4.96‍%.
  • 6 Single-crystal X-ray data were measured using a Rigaku SuperNova dual-source Oxford diffractometer equipped with an Atlas detector using mirror-monochromated Cu-Kα (λ = 1.54184 Å) radiation. The data collection and reduction were performed using the program CrysAlisPro (Rigaku Oxford Diffraction, 2018, CrysAlisPro, Rigaku Corporation, Oxford, UK) and an empirical absorption correction method using spherical harmonics correction was applied. The structure was solved with intrinsic phasing (ShelXT) (Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3) and refined by full-matrix least squares on F 2 using the Olex2 software (Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr., 2009, 42, 339), which utilises the ShelXL-2015 module (Sheldrick, G. M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3). Anisotropic displacement parameters were assigned to non-H atoms. All hydrogen atoms were refined using riding models with U eq(H) of 1.5 U eq(C/O) for methyl/hydroxyl groups and U eq(H) of 1.2 U eq(C) for all other C – H groups (methylene, aromatic). Crystal data for KLi3[2 3 Ti2]: C16H13FN2O, M = 1956.38, orange needle, 0.03 × 0.06 × 0.16 mm3, monoclinic, space group P21, a = 16.9444(2) Å, b = 18.6694(2) Å, c = 18.0956(3) Å, β = 96.342(1)°, V = 5689.36(13) Å3, Z = 2, D calc = 1.142 gcm−3, F000 = 2044, µ = 2.18 mm−1, T = 120.0(1) K, θ max = 76.2°, 22155 total reflections, 19518 with I o > 2σ(I o), R int = 0.035, 22155 data, 1257 parameters, 87 restraints, GooF = 0.99, R 1[I o > 2σ(I o)] = 0.042 and wR 2 = 0.105, 0.27 < dΔρ < −0.26 eÅ−3, Flack = 0.018(5), CCDC-2180683.
  • 7 Albrecht M, Janser I, Fleischhauer J, Wang Y, Raabe G, Fröhlich R. Mendeleev Commun. 2004; 14: 250
  • 8 See for preliminary studies: Van Craen D, Begall J, Großkurth J, Himmel L, Linnenberg O, Isaak E, Albrecht M. Beilstein J. Org. Chem. 2020; 16: 2338