Synthesis 2023; 55(02): 193-231
DOI: 10.1055/a-1946-0512
review
Special Issue dedicated to Prof. Alain Krief

Emerging Activation Modes and Techniques in Visible-Light-Photocatalyzed Organic Synthesis

Dries De Vos
,
Karthik Gadde
,
This work was supported by the Universiteit Antwerpen (BOF), the Fonds Wetenschappelijk Onderzoek Vlaanderen (Fund for Scientific Research Flanders (FWO) (project G0F1420N and scholarship to D.D.V., 11G6621N). B.U.W.M. is a Collen-Francqui research professor of the Francqui foundation.


Dedicated to Professor Alain Krief on the occasion of his 80th birthday

Abstract

Visible light photocatalysis has evolved into a promising mild and sustainable strategy to access radicals. This field unlocks formerly challenging or even previously inaccessible organic transformations. In this review, an overview of some lesser-known modes of photochemical activation of organic molecules and several emerging techniques within the versatile field of visible light photocatalysis are discussed. These are illustrated by selected photocatalytic reactions, with particular attention given to the reaction mechanism.

1 Introduction

2 Advanced Photoactivation Modes

2.1 Photoinduced Hydrogen-Atom Transfer

2.2 Proton-Coupled Electron Transfer

2.3 Electron Donor-Acceptor Photoactivation of Organic Substrates

2.4 Excited-State Transition Metal Catalysis

3 Emerging Techniques

3.1 Dual Catalysis

3.2 Excited Radical Ion Photocatalysis

3.3 Upconversion Strategies and Other Two-Photon Mechanisms

3.4 Red and Near-Infrared Photocatalysis

4 Conclusions and Outlook



Publication History

Received: 16 July 2022

Accepted after revision: 16 September 2022

Accepted Manuscript online:
16 September 2022

Article published online:
29 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
    • 2b Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
    • 2c Strieth-Kalthoff F, Glorius F. Chem 2020; 6: 1888
  • 3 Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
    • 4a Miller DC, Tarantino KT, Knowles RR. Top. Curr. Chem. 2016; 374: 30
    • 4b Murray PR. D, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Chem. Rev. 2022; 122: 2017
    • 6a Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
    • 6b Cheung KP. S, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543
    • 7a Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 7b Hockin BM, Li C, Robertson N, Zysman-Colman E. Catal. Sci. Technol. 2019; 9: 889
    • 8a Bryden MA, Zysman-Colman E. Chem. Soc. Rev. 2021; 50: 7587
    • 8b Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
    • 8c Amos SG. E, Garreau M, Buzzetti L, Waser J. Beilstein J. Org. Chem. 2020; 16: 1163
    • 8d Lee Y, Kwon MS. Eur. J. Org. Chem. 2020; 2020: 6028
    • 8e Bobo MV, Kuchta JJ, Vannucci AK. Org. Biomol. Chem. 2021; 19: 4816
    • 9a Riente P, Noël T. Catal. Sci. Technol. 2019; 9: 5186
    • 9b Franchi D, Amara Z. ACS Sustainable Chem. Eng. 2020; 8: 15405
  • 10 Gadde K, De Vos D, Maes BU. W. Synthesis 2022; in press DOI: 10.1055/a-1932-6937.
  • 11 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
    • 12a Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
    • 12b Sambiagio C, Maes BU. W. Non-Directed Functionalization of Distal C(sp3)–H Bonds. In Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis. Maiti D, Guin S. Wiley-VCH; Weinheim: 2021: 343-382
    • 12c Sterckx H, Morel B, Maes BU. W. Angew. Chem. Int. Ed. 2019; 58: 7946
    • 12d Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Chem. Rev. 2022; 122: 1
  • 13 Jaynes BS, Hill CL. J. Am. Chem. Soc. 1993; 115: 12212
  • 14 Yamada K, Okada M, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Org. Lett. 2015; 17: 1292
  • 15 Basile T, Capaldo L, Ravelli D, Quadrelli P. Eur. J. Org. Chem. 2020; 2020: 1443
  • 16 Choi GJ, Knowles RR. J. Am. Chem. Soc. 2015; 137: 9226
  • 17 Fava E, Nakajima M, Nguyen AL. P, Rueping M. J. Org. Chem. 2016; 81: 6959
  • 18 Tobisu M, Furukawa T, Chatani N. Chem. Lett. 2013; 42: 1203
  • 19 Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
  • 20 Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
  • 21 Chuentragool P, Kurandina D, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 11586
    • 22a Ratushnyy M, Parasram M, Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2018; 57: 2712
    • 22b Kurandina D, Parasram M, Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 14212
    • 22c Kurandina D, Rivas M, Radzhabov M, Gevorgyan V. Org. Lett. 2018; 20: 357
    • 22d Chuentragool P, Yadagiri D, Morita T, Sarkar S, Parasram M, Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 1794
    • 22e Cheung KP. S, Kurandina D, Yata T, Gevorgyan V. J. Am. Chem. Soc. 2020; 142: 9932
    • 23a Wang G.-Z, Shang R, Fu Y. Org. Lett. 2018; 20: 888
    • 23b Wang G.-Z, Shang R, Cheng W.-M, Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
    • 23c Zhao B, Shang R, Wang G.-Z, Wang S, Chen H, Fu Y. ACS Catal. 2020; 10: 1334
  • 24 Zhou W.-J, Cao G.-M, Shen G, Zhu X.-Y, Gui Y.-Y, Ye J.-H, Sun L, Liao L.-L, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15683
    • 25a Koy M, Sandfort F, Tlahuext-Aca A, Quach L, Daniliuc CG, Glorius F. Chem. Eur. J. 2018; 24: 4552
    • 25b Huang H.-M, Koy M, Serrano E, Pflüger PM, Schwarz JL, Glorius F. Nat. Catal. 2020; 3: 393
    • 25c Huang H.-M, Bellotti P, Pflüger PM, Schwarz JL, Heidrich B, Glorius F. J. Am. Chem. Soc. 2020; 142: 10173
    • 26a Jiao Z, Lim LH, Hirao H, Zhou JS. Angew. Chem. Int. Ed. 2018; 57: 6294
    • 26b Torres GM, Liu Y, Arndtsen BA. Science 2020; 368: 318
    • 26c Ma J.-W, Chen X, Zhou Z.-Z, Liang Y.-M. J. Org. Chem. 2020; 85: 9301
    • 26d Adamik R, Földesi T, Novák Z. Org. Lett. 2020; 22: 8091
    • 26e Kim D, Lee GS, Kim D, Hong SH. Nat. Commun. 2020; 11: 5266
    • 26f Yang Z, Koenigs RM. Chem. Eur. J. 2021; 27: 3694
    • 26g Sun L, Ye J.-H, Zhou W.-J, Zeng X, Yu D.-G. Org. Lett. 2018; 20: 3049
    • 26h Sun S, Zhou C, Yu J.-T, Cheng J. Org. Lett. 2019; 21: 6579
  • 27 Parasram M, Chuentragool P, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2016; 138: 6340
  • 28 Parasram M, Chuentragool P, Wang Y, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2017; 139: 14857
    • 29a Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 29b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 29c Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 30a Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 30b Zhou W.-J, Zhang Y.-H, Gui Y.-Y, Sun L, Yu D.-G. Synthesis 2018; 50: 3359
    • 30c Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
    • 30d Zhang H.-H, Chen H, Zhu C, Yu S. Sci. China: Chem. 2020; 63: 637
    • 30e Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
    • 30f Sarkar T, Shah TA, Maharana PK, Debnath B, Punniyamurthy T. Eur. J. Org. Chem. 2022; in press DOI: 10.1002/ejoc.202200541.
  • 31 Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 32a Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
    • 32b Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 33 García-Domínguez A, Mondal R, Nevado C. Angew. Chem. Int. Ed. 2019; 58: 12286
  • 34 Campbell MW, Compton JS, Kelly CB, Molander GA. J. Am. Chem. Soc. 2019; 141: 20069
    • 35a Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
    • 35b Kudisch M, Lim C.-H, Thordarson P, Miyake GM. J. Am. Chem. Soc. 2019; 141: 19479
    • 35c Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
  • 36 Das S, Murugesan K, Villegas Rodríguez GJ, Kaur J, Barham JP, Savateev A, Antonietti M, König B. ACS Catal. 2021; 11: 1593
    • 37a Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Beilstein J. Org. Chem. 2020; 16: 2363
    • 37b Großkopf J, Kratz T, Rigotti T, Bach T. Chem. Rev. 2022; 122: 1626
    • 37c Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chem. Rev. 2022; 122: 1654
    • 37d Jiang C, Chen W, Zheng W.-H, Lu H. Org. Biomol. Chem. 2019; 17: 8673
  • 38 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 39a Nacsa ED, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 3322
    • 39b Capacci AG, Malinowski JT, McAlpine NJ, Kuhne J, MacMillan DW. C. Nat. Chem. 2017; 9: 1073
    • 39c Welin ER, Warkentin AA, Conrad JC, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 9668
    • 39d Cecere G, König CM, Alleva JL, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 11521
    • 39e Shih H.-W, Vander Wal MN, Grange RL, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 13600
    • 39f Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
    • 40a Blum TR, Miller ZD, Bates DM, Guzei IA, Yoon TP. Science 2016; 354: 1391
    • 40b Miller ZD, Lee BJ, Yoon TP. Angew. Chem. Int. Ed. 2017; 56: 11891
  • 41 Wilger DJ, Grandjean J.-MM, Lammert TR, Nicewicz DA. Nat. Chem. 2014; 6: 720
  • 42 Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
  • 43 MacKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
    • 44a Kim D, Teets TS. Chem. Phys. Rev. 2022; 3: 021302
    • 44b Markushyna Y, Savateev A. Eur. J. Org. Chem. 2022; 2022: e202200026
  • 45 Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
  • 46 Ghosh I, König B. Angew. Chem. Int. Ed. 2016; 55: 7676
  • 47 Neumeier M, Sampedro D, Májek M, de la Peña O’Shea VA, Jacobi von Wangelin A, Pérez-Ruiz R. Chem. Eur. J. 2018; 24: 105
  • 48 Bardagi JI, Ghosh I, Schmalzbauer M, Ghosh T, König B. Eur. J. Org. Chem. 2018; 2018: 34
  • 49 Cole JP, Chen D.-F, Kudisch M, Pearson RM, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2020; 142: 13573
    • 50a Rombach D, Wagenknecht H.-A. ChemCatChem 2018; 10: 2955
    • 50b Rombach D, Wagenknecht H.-A. Angew. Chem. Int. Ed. 2020; 59: 300
  • 51 Targos K, Williams OP, Wickens ZK. J. Am. Chem. Soc. 2021; 143: 4125
    • 52a Yu Y, Guo P, Zhong J.-S, Yuan Y, Ye K.-Y. Org. Chem. Front. 2020; 7: 131
    • 52b Barham JP, König B. Angew. Chem. Int. Ed. 2020; 59: 11732
    • 52c Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 52d Huang H, Steiniger KA, Lambert TH. J. Am. Chem. Soc. 2022; 144: 12567
  • 53 Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew. Chem. Int. Ed. 2022; 61: e202107811
    • 54a Moutet J.-C, Reverdy G. Tetrahedron Lett. 1979; 20: 2389
    • 54b Moutet J.-C, Reverdy G. J. Chem. Soc., Chem. Commun. 1982; 654
  • 55 Huang H, Strater ZM, Rauch M, Shee J, Sisto TJ, Nuckolls C, Lambert TH. Angew. Chem. Int. Ed. 2019; 58: 13318
  • 56 Shen T, Lambert TH. Science 2021; 371: 620
  • 57 Huang H, Strater ZM, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
  • 58 Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
  • 59 Tian X, Karl TA, Reiter S, Yakubov S, de Vivie-Riedle R, König B, Barham JP. Angew. Chem. Int. Ed. 2021; 60: 20817
    • 60a Beckwith JS, Aster A, Vauthey E. Phys. Chem. Chem. Phys. 2022; 24: 568
    • 60b Christensen JA, Phelan BT, Chaudhuri S, Acharya A, Batista VS, Wasielewski MR. J. Am. Chem. Soc. 2018; 140: 5290
    • 60c Gosztola D, Niemczyk MP, Svec W, Lukas AS, Wasielewski MR. J. Phys. Chem. A 2000; 104: 6545
  • 61 Wu S, Žurauskas J, Domański M, Hitzfeld PS, Butera V, Scott DJ, Rehbein J, Kumar A, Thyrhaug E, Hauer J, Barham JP. Org. Chem. Front. 2021; 8: 1132
  • 62 Zeng L, Liu T, He C, Shi D, Zhang F, Duan C. J. Am. Chem. Soc. 2016; 138: 3958
  • 63 Glaser F, Kerzig C, Wenger OS. Chem. Sci. 2021; 12: 9922
    • 64a Castellanos-Soriano J, Herrera-Luna JC, Díaz Díaz D, Jiménez MC, Pérez-Ruiz R. Org. Chem. Front. 2020; 7: 1709
    • 64b Pérez-Ruiz R. Top. Curr. Chem. 2022; 380: 23
    • 65a Mahmood Z, Ji S, Zhao J, Hussain M, Sadiq F, Rehmat N, Imran M. Organic Triplet Photosensitizers for Triplet-Triplet Annihilation Upconversion. In Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells: Redefining the Limits of Solar Power Conversion Efficiency. Lissau JS, Madsen M. Springer International; Cham: 2022: 71-105
    • 65b Awwad N, Yang M, Castellano FN. Photophysics. In Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells: Redefining the Limits of Solar Power Conversion Efficiency. Lissau JS, Madsen M. Springer International; Cham: 2022: 9-28
  • 66 Häring M, Pérez-Ruiz R, Jacobi von Wangelin A, Díaz DD. Chem. Commun. 2015; 51: 16848
  • 67 Majek M, Faltermeier U, Dick B, Pérez-Ruiz R, Jacobi von Wangelin A. Chem. Eur. J. 2015; 21: 15496
    • 68a López-Calixto CG, Liras M, de la Peña O’Shea VA, Pérez-Ruiz R. Appl. Catal., B 2018; 237: 18
    • 68b Castellanos-Soriano J, Álvarez-Gutiérrez D, Jiménez MC, Pérez-Ruiz R. Photochem. Photobiol. Sci. 2022; 21: 1175
  • 69 Ghosh I, Shaikh RS, König B. Angew. Chem. Int. Ed. 2017; 56: 8544
  • 70 Marchini M, Bergamini G, Cozzi PG, Ceroni P, Balzani V. Angew. Chem. Int. Ed. 2017; 56: 12820
  • 71 Ghosh I, Bardagi JI, König B. Angew. Chem. Int. Ed. 2017; 56: 12822
  • 72 Coles MS, Quach G, Beves JE, Moore EG. Angew. Chem. Int. Ed. 2020; 59: 9522
    • 73a Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
    • 73b Sambiagio C, Noël T. Trends Chem. 2020; 2: 92
    • 73c Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noël T. Chem. Rev. 2022; 122: 2752
  • 74 Sellet N, Cormier M, Goddard J.-P. Org. Chem. Front. 2021; 8: 6783
  • 75 Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM. Nature 2019; 565: 343
  • 76 Bilger JB, Kerzig C, Larsen CB, Wenger OS. J. Am. Chem. Soc. 2021; 143: 1651
  • 77 Freitag M, Möller N, Rühling A, Strassert CA, Ravoo BJ, Glorius F. ChemPhotoChem 2019; 3: 24
  • 78 Fajardo J, Barth AT, Morales M, Takase MK, Winkler JR, Gray HB. J. Am. Chem. Soc. 2021; 143: 19389
  • 79 Glaser F, Wenger OS. JACS Au 2022; 2: 1488
  • 80 Ravetz BD, Tay NE. S, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. ACS Cent. Sci. 2020; 6: 2053
  • 81 Goldschmid SL, Bednářová E, Beck LR, Xie K, Tay NE. S, Ravetz BD, Li J, Joe CL, Rovis T. Synlett 2022; 33: 247
  • 82 Carboni A, Dagousset G, Magnier E, Masson G. Synthesis 2015; 47: 2439
    • 83a Mei L, Veleta JM, Gianetti TL. J. Am. Chem. Soc. 2020; 142: 12056
    • 83b Stull SM, Mei L, Gianetti TL. Synlett 2022; 33: 1194
    • 83c Cocquet G, Ferroud C, Guy A. Tetrahedron 2000; 56: 2975
    • 83d Cocquet G, Ferroud C, Simon P, Taberna P.-L. J. Chem. Soc., Perkin Trans. 2 2000; 1147
    • 83e Lee J, Papatzimas JW, Bromby AD, Gorobets E, Derksen DJ. RSC Adv. 2016; 6: 59269
    • 83f Matsuzaki K, Hiromura T, Tokunaga E, Shibata N. ChemistryOpen 2017; 6: 226
    • 83g Yerien DE, Cooke MV, García Vior MC, Barata-Vallejo S, Postigo A. Org. Biomol. Chem. 2019; 17: 3741
    • 84a Obah Kosso AR, Sellet N, Baralle A, Cormier M, Goddard J.-P. Chem. Sci. 2021; 12: 6964
    • 84b Tanioka M, Kuromiya A, Ueda R, Obata T, Muranaka A, Uchiyama M, Kamino S. Chem. Commun. 2022; 58: 7825
  • 85 Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Chem. Rev. 2020; 120: 986
  • 86 Liang W, Sun Y, Liang Z, Li D, Wang Y, Qin W, Jiang L. ACS Appl. Mater. Interfaces 2020; 12: 16753
  • 87 Zhao L.-B, Huang Y.-F, Liu X.-M, Anema JR, Wu D.-Y, Ren B, Tian Z.-Q. Phys. Chem. Chem. Phys. 2012; 14: 12919
    • 88a Wang F, Li C, Chen H, Jiang R, Sun L.-D, Li Q, Wang J, Yu JC, Yan C.-H. J. Am. Chem. Soc. 2013; 135: 5588
    • 88b Verkaaik M, Grote R, Meulendijks N, Sastre F, Weckhuysen BM, Buskens P. ChemCatChem 2019; 11: 4974
  • 89 Zhang S, Yi W, Guo Y, Jiang R, Chen X.-L, Yang B, Wang J. ACS Appl. Nano Mater. 2021; 4: 4623