Klin Monbl Augenheilkd 2022; 239(12): 1447-1453
DOI: 10.1055/a-1947-5562
Übersicht

Retinal and Choroidal Ultra-Widefield OCT – Technology, Insights, and Clinical Relevance

Article in several languages: deutsch | English
Claudia Brockmann
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
,
Tobias Brockmann
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
,
Adrianna Urszula Dera
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
,
Ha-Vy Do
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
,
Wladislaw Rusch
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
,
Friederike Schaub
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
,
Thomas Armin Fuchsluger
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
,
Oliver Stachs
Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
› Author Affiliations

Abstract

As one of the most state-of-the-art procedures for retinal and choroidal imaging, ultra-widefield optical coherence tomography (UWF-OCT) offers significant gains in terms of information pertaining to peripheral retinal lesions and their differential diagnoses. In particular, it enables the presence of minimal accumulations of subretinal fluid to be assessed in detail and then documented. It also enables choroidal expansion of choroidal lesions to be precisely measured. Similar to conventional OCT, its only limitations relate to patient compliance and opacities of the ocular media. While the pupil width is somewhat less important here, the quality of the images is nevertheless better with the patient under medication-induced mydriasis. Used in combination with UWF fundus photography, UWF-OCT is a helpful tool for assessing and monitoring peripheral retinal and choroidal lesions.



Publication History

Received: 01 August 2022

Accepted: 14 September 2022

Article published online:
09 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hee MR, Baumal CR, Puliafito CA. et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 1996; 103: 1260-1270
  • 2 Coscas F, Coscas G, Souied E. et al. Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 2007; 144: 592-599
  • 3 Pieroni CG, Witkin AJ, Ko TH. et al. Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 2006; 90: 191-197
  • 4 Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 2005; 36: 331-335
  • 5 Sayanagi K, Sharma S, Yamamoto T. et al. Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Ophthalmology 2009; 116: 947-955
  • 6 Framme C, Panagakis G, Birngruber R. Effects on choroidal neovascularization after anti-VEGF Upload using intravitreal ranibizumab, as determined by spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 1671-1676
  • 7 Hee MR, Puliafito CA, Duker JS. et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998; 105: 360-370
  • 8 Rosenfeld PJ, Fung AE, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic Surg Lasers Imaging 2005; 36: 336-339
  • 9 Rehak J, Rehak M. Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities. Curr Eye Res 2008; 33: 111-131
  • 10 Karim R, Sykakis E, Lightman S. et al. Interventions for the treatment of uveitic macular edema: a systematic review and meta-analysis. Clin Ophthalmol 2013; 7: 1109-1144
  • 11 Sudhalkar A, Chhablani J, Vasavada A. et al. Intravitreal dexamethasone implant for recurrent cystoid macular edema due to Irvine-Gass syndrome: a prospective case series. Eye (Lond) 2016; 30: 1549-1557
  • 12 Minami Y, Ishiko S, Takai Y. et al. Retinal changes in juvenile X linked retinoschisis using three dimensional optical coherence tomography. Br J Ophthalmol 2005; 89: 1663-1664
  • 13 Duncker T, Greenberg JP, Ramachandran R. et al. Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 2014; 55: 1471-1482
  • 14 Tanner V, Chauhan DS, Jackson TL. et al. Optical coherence tomography of the vitreoretinal interface in macular hole formation. Br J Ophthalmol 2001; 85: 1092-1097
  • 15 Ko TH, Fujimoto JG, Duker JS. et al. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 2004; 111: 2033-2043
  • 16 Brockmann T, Steger C, Weger M. et al. Risk assessment of idiopathic macular holes undergoing vitrectomy with dye-assisted internal limiting membrane peeling. Retina 2013; 33: 1132-1136
  • 17 Ehlers JP, Tam T, Kaiser PK. et al. Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome. Retina 2014; 34: 1341-1346
  • 18 Wessing A. Fluorescein Angiography of the Retina. Textbook and Atlas. Translated by G.K. von Noorden. St. Louis: Mosby; 1969
  • 19 Kozak I, Morrison VL, Clark TM. et al. Discrepancy between fluorescein angiography and optical coherence tomography in detection of macular disease. Retina 2008; 28: 538-544
  • 20 Kogure K, David NJ, Yamanouchi U. et al. Infrared absorption angiography of the fundus circulation. Arch Ophthalmol 1970; 83: 209-214
  • 21 Hochheimer BF. Angiography of the retina with indocyanine green. Arch Ophthalmol 1971; 86: 564-565
  • 22 Talks J, Koshy Z, Chatzinikolas K. Use of optical coherence tomography, fluorescein angiography and indocyanine green angiography in a screening clinic for wet age-related macular degeneration. Br J Ophthalmol 2007; 91: 600-601
  • 23 Huang Y, Zhang Q, Thorell MR. et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina 2014; 45: 382-389
  • 24 Spaide RF, Fujimoto JG, Waheed NK. Optical Coherence Tomography Angiography. Retina 2015; 35: 2161-2162
  • 25 Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133: 45-50
  • 26 Spaide RF. Optical Coherence Tomography Angiography Signs of Vascular Abnormalization With Antiangiogenic Therapy for Choroidal Neovascularization. Am J Ophthalmol 2015; 160: 6-16
  • 27 Witmer MT, Kiss S. Wide-field imaging of the retina. Surv Ophthalmol 2013; 58: 143-154
  • 28 Witmer MT, Parlitsis G, Patel S. et al. Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®). Clin Ophthalmol 2013; 7: 389-394
  • 29 Abalem MF, Otte B, Andrews C. et al. Peripheral Visual Fields in ABCA4 Stargardt Disease and Correlation With Disease Extent on Ultra-widefield Fundus Autofluorescence. Am J Ophthalmol 2017; 184: 181-188
  • 30 Choudhry N, Golding J, Manry MW. et al. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery. Ophthalmology 2016; 123: 1368-1374
  • 31 Holmes J. OCT technology development: where are we now? A commercial perspective. J Biophotonics 2009; 2: 347-352
  • 32 Fercher A, Hitzenberger C, Kamp G. et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt Comm 1995; 117: 43-48
  • 33 Fercher AF, Drexler W, Hitzenberger CK. et al. Optical coherence tomography-principles and applications. Rep Prog Physics 2003; 66: 239-303
  • 34 Huang D, Swanson EA, Lin CP. et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 35 Forooghian F, Cukras C, Meyerle CB. et al. Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci 2008; 49: 4290-4296
  • 36 Ung C, Laíns I, Silverman RF. et al. Evaluation of choroidal lesions with swept-source optical coherence tomography. Br J Ophthalmol 2019; 103: 88-93