RSS-Feed abonnieren
DOI: 10.1055/a-1951-2726
Recent Advances on the Development of Synthetic Strategies to Access Dibenzoxepine Derivatives
We thank the Council of Scientific and Industrial Research, New Delhi, India for financial support (ref. no. 34/1/TD-CLP/NCP-FBR 2020-RPPBDD-TMD–Se-MI).

Abstract
Dibenzoxepines have gained privileged status in medicinal chemistry and drug discovery due to their appearance in various natural products and life-saving drug molecules. Dibenzoxepine-based molecules, such as artocarpols, asenapine, and pacharin, possess a wide range of biological activities including anti-inflammatory, antidepressant, antihypertensive, antiestrogenic, and insecticidal activities. Therefore, designing and developing new methodologies to access the dibenzoxepine core has become a paramount research topic for organic/ medicinal chemists. Herein, we reviewed various synthetic methods to access dibenzoxepine derivatives. The total syntheses of dibenzoxepine-based natural products and biologically/medicinally important molecules have also been reviewed.
1 Introduction
2 Transition-Metal-Free Approaches
2.1 Acid-Mediated Transformations
2.2 Base-Mediated Transformations
2.3 NHC-Organocatalyzed Transformations
2.4 Miscellaneous
3 Metal-Mediated Approaches
4 Transition-Metal-Catalyzed Approaches
4.1 Iron-Catalyzed Transformations
4.2 Copper-Catalyzed Transformations
4.3 Ruthenium-Catalyzed Transformations
4.4 Palladium-Catalyzed Transformations
4.5 Other Transition-Metal-Catalyzed Transformations
5 Total Syntheses
6 Conclusion
Key words
dibenzoxepine - NHC organocatalysis - transition-metal catalysis - SNAr reaction - natural products - active pharmaceutical ingredients (APIs)Publikationsverlauf
Eingereicht: 05. August 2022
Angenommen nach Revision: 27. September 2022
Accepted Manuscript online:
27. September 2022
Artikel online veröffentlicht:
28. November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ulubelen A, Tuzlaci E, Atilan N. Phytochemistry 1989; 28: 649
- 1b Qiun T.-X, Li L.-N. Phytochemistry 1992; 31: 1068
- 1c Ko H.-H, Yang S.-Z, Lin C.-N. Tetrahedron Lett. 2001; 42: 5269
- 1d Snyder NL, Haines HM, Peczuh MW. Tetrahedron 2006; 62: 9301
- 2a Anjaneyulu AS. R, Reddy AV. R, Reddy DS. K, Ward RS, Adhikesavalu D, Cameron TS. Tetrahedron 1984; 40: 4245
- 2b Chung M.-I, Ko H.-H, Yen M.-H, Lin C.-N, Yang S.-Z, Tsao L.-T, Wang J.-P. Helv. Chim. Acta 2000; 83: 1200
- 2c Fernández J, Alonso JM, Andrés JI, Cid JM, Díaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA. J. Med. Chem. 2005; 48: 1709
- 2d Pettit GR, Numata A, Iwamoto C, Usami Y, Yamada T, Ohishi H, Cragg GM. J. Nat. Prod. 2006; 69: 323
- 2e Mu L.-H, Li J.-B, Yang J.-Z, Zhang D.-M. J. Asian Nat. Prod. Res. 2007; 9: 649
- 3a Ong HH, Profitt JA, Anderson VB, Spaulding TC, Wilker JC, Geyer HM. III, Kruse H. J. Med. Chem. 1980; 23: 494
- 3b Nagai Y, Irie A, Nakamura H, Hino K, Uno H, Nishimura H. J. Med. Chem. 1982; 25: 1065
- 3c Acton D, Hill G, Tait BS. J. Med. Chem. 1983; 26: 1131
- 3d Roeder T, Nathanson JA. Neurochem. Res. 1993; 18: 921
- 3e Kiyama R, Honma T, Hayashi K, Ogawa M, Hara M, Fujimoto M, Fujishita T. J. Med. Chem. 1995; 38: 2728
- 4a Lin CN, Yang SZ. Helv. Chim. Acta 2000; 83: 3000
- 4b Lu Y.-H, Lin C.-N, Ko H.-H, Yang S.-Z, Tsao L.-T, Yang J.-P. Helv. Chim. Acta 2002; 85: 1626
- 5 Kittakoop P, Nopichai S, Thongon N, Charoenchai P, Thebtaranonth Y. Helv. Chim. Acta 2004; 87: 175
- 6 Lin Y.-L, Chang Y.-Y, Kuo Y.-H, Shiao M.-S. J. Nat. Prod. 2002; 65: 745
- 7a Zimmermann K, Roggo S, Kragten E, Fürst P, Waldmeier P. Bioorg. Med. Chem. Lett. 1998; 8: 1195
- 7b Sagot Y, Toni N, Perrelet D, Lurot S, King B, Rixner H, Mattenberger L, Waldmeier PC, Kato AC. Br. J. Pharmacol. 2000; 131: 721
- 7c Shahid M, Walker G, Zorn S, Wong E. J. Psychopharmacol. 2009; 23: 65
- 7d Hounsou C, Baehr C, Gasparik V, Alili D, Belhocine A, Rodriguez T, Dupuis E, Roux T, Mann A, Heissler D, Pin J.-P, Durroux T, Bonnet D, Hibert M. J. Med. Chem. 2018; 61: 174
- 8 Midha KK, Hubbard JW, Mckay G, Haws EM, Korchinski ED, Gurnsy T, Cooper JK, Schwede R. Eur. J. Clin. Pharmacol. 1992; 42: 539
- 9a Ohshima E, Otaki S, Sato H, Kumazawa T, Obase H, Ishii A, Ishii H, Ohmori K, Hirayama N. J. Med. Chem. 1992; 35: 2074e
- 9b Kaliner MA, Oppenheimer J, Farrar JR. Allergy Asthma Proc. 2010; 31: 112
- 10 Olivera R, Sanmartin R, Churruca F, Domínguez E. Org. Prep. Proced. Int. 2004; 36: 297
- 11 Storz T, Vangrevelinghe E, Dittmar P. Synthesis 2005; 2562
- 12 Colombel V, Baudoin O. J. Org. Chem. 2009; 74: 4329
- 13 Reddy CR, Ramesh P, Rao NN, Ali SA. Eur. J. Org. Chem. 2011; 2133
- 14 Dobelmann L, Parham A, Büsing A, Buchholz H, König B. RSC Adv. 2014; 4: 60473
- 15 Wang J, Liu J, Lan H, Chu W, Sun Z. Synthesis 2015; 47: 3049
- 16 Guastavino JF, Rossi RA. J. Org. Chem. 2012; 77: 460
- 17 Choi YL, Lim HS, Lim HJ, Heo J.-N. Org. Lett. 2012; 14: 5102
- 18 Krawczyk H, Wrzesiński M, Mielecki D, Szczeciński P, Grzesiuk E. Tetrahedron 2016; 72: 3877
- 19 Asai S, Kato M, Monguchi Y, Sajiki H, Sawama Y. Chem. Commun. 2017; 53: 4787
- 20 Taweesak P, Thongaram P, Kraikruan P, Thanetchaiyakup A, Chuanopparat N, Hsieh H.-P, Uang B.-J, Ngernmeesri P. J. Org. Chem. 2021; 86: 1955
- 21 Li K, Zhang K, Huang H, Zhang Q, Song C, Chang J. Asian J. Org. Chem. 2021; 10: 1765
- 22 Feofanov M, Akhmetov V, Takayama R, Amsharov K. Angew. Chem. Int. Ed. 2021; 60: 5199
- 23 Satyam K, Ramarao J, Suresh S. Org. Biomol. Chem. 2021; 19: 1488
- 24 Yadav S, Suresh S. Asian J. Org. Chem. 2021; 10: 1406
- 25 Xia Q, Zhao X, Zhang J, Wang J, Song G. Tetrahedron Lett. 2020; 61: 151500
- 26 Kennedy SH, Dherange BD, Berger KJ, Levin MD. Nature 2021; 593: 223
- 27 Qin H, Cai W, Wang S, Guo T, Li G, Lu H. Angew. Chem. Int. Ed. 2021; 60: 20678
- 28 Cong Z, Miki T, Urakawa O, Nishino H. J. Org. Chem. 2009; 74: 3978
- 29 Edwards DJ, Hadfield JA, Wallace TW, Ducki S. Org. Biomol. Chem. 2011; 9: 219
- 30 Moreno DR. R, Giorgi G, Salas CO, Tapia RA. Molecules 2013; 18: 14797
- 31 Bera K, Jalal S, Sarkar S, Jana U. Org. Biomol. Chem. 2014; 12: 57
- 32 Scoccia J, Castro MJ, Faraoni MB, Bouzat C, Martín VS, Gerbino DC. Tetrahedron 2017; 73: 2913
- 33 Panda N, Mattan I, Ojha S, Purohit CS. Org. Biomol. Chem. 2018; 16: 7861
- 34 Wang Y, Chen Y, He Q, Xie Y, Yang C. Helv. Chim. Acta 2013; 96: 296
- 35 Lim HS, Choi YL, Heo J.-N. Org. Lett. 2013; 15: 4718
- 36 Stopka T, Marzo L, Zurro M, Janich S, Würthwein E.-U, Daniliuc CG, Alemán J, Mancheño OG. Angew. Chem. Int. Ed. 2015; 54: 5049
- 37 Villuri BK, Ichake SS, Reddy SR, Kavala V, Bandi V, Kuo C.-W, Yao C.-F. J. Org. Chem. 2018; 83: 10241
- 38 Bharath Y, Thirupathi B, Ranjit G, Mohapatra DK. Asian J. Org. Chem. 2013; 2: 848
- 39 Matsuda T, Sato S. J. Org. Chem. 2013; 78: 3329
- 40 Arnold LA, Luo W, Guy RK. Org. Lett. 2004; 6: 3005
- 41 Parthasarathy K, Han H, Prakash C, Cheng C.-H. Chem. Commun. 2012; 48: 6580
- 42 Jepsen TH, Larsen M, Jørgensen M, Nielsen MB. Synlett 2012; 418
- 43 Majumdar KC, Ghosh T, Ponra S. Tetrahedron Lett. 2013; 54: 4661
- 44 Dimitrijević E, Cusimano M, Taylor MS. Org. Biomol. Chem. 2014; 12: 1391
- 45 Whitaker D, Batuecas M, Ricci P, Larrosa I. Chem. Eur. J. 2017; 23: 12763
- 46 Ausekle E, Ehlers P, Villinger A, Langer P. J. Org. Chem. 2018; 83: 14195
- 47 Fu W, Yu A, Jiang H, Zuo M, Wu H, Yang Z, An Q, Sun Z, Chu W. Org. Biomol. Chem. 2019; 17: 3324
- 48 Deichert JA, Mizufune H, Patel JJ, Hurst TE, Maheta A, Kitching MO, Ross AC, Snieckus V. Eur. J. Org. Chem. 2020; 4693
- 49 Chien C.-W, Teng Y.-HG, Honda T, Ojima I. J. Org. Chem. 2018; 83: 11623
- 50 Sprenger K, Golz C, Alcarazo M. Eur. J. Org. Chem. 2020; 6245
- 51 Luu QH, Li J. Chem. Sci. 2022; 13: 1095
- 52 Liang T, Dong G, Li C, Xu X, Xu Z. Org. Lett. 2022; 24: 1817
- 53 Rodrigues JA. R, Abramovitch RA, de Sousa JD. F, Leiva GC. J. Org. Chem. 2004; 69: 2920
- 54 Nishimura K, Kinugawa M. Org. Process Res. Dev. 2012; 16: 225
- 55 Cudaj J, Podlech J. Synlett 2012; 371
- 56a Schmidt TJ, Vößing S, Klaes M, Grimme S. Planta Med. 2007; 73: 1574
- 56b Tietze LF, Duefert SC, Clerc J, Bischoff M, Maaß C, Stalke D. Angew. Chem. Int. Ed. 2013; 52: 3191
- 57 Weinstabl H, Suhartono M, Qureshi Z, Lautens M. Angew. Chem. Int. Ed. 2013; 52: 5305
- 58 Odagi M, Furukori K, Yamamoto Y, Sato M, Iida K, Yamanaka M, Nagasawa K. J. Am. Chem. Soc. 2015; 137: 1909
- 59 Xu M, Hou M, He H, Gao S. Angew. Chem. Int. Ed. 2021; 60: 16655
- 60 Cao J.-S, Zeng J, Xiao J, Wang X.-H, Wang Y, Peng Y. Chem. Commun. 2022; 58: 7273
- 61 Anugu RR, Mainkar PS, Sridhar B, Chandrasekhar S. Org. Biomol. Chem. 2016; 14: 1332
- 62 Szcześniak P, Staszewska-Krajewska O, Mlynarski J. Org. Biomol. Chem. 2019; 17: 3225
- 63 Hansen MM, Kallman NJ, Koenig TM, Linder RJ, Richey RN, Rizzo JR, Ward JA, Yu H, Zhang TY, Mitchell D. Org. Process Res. Dev. 2017; 21: 208
- 64 Wu K, Xie ZP, Cui D.-M, Zhang C. Org. Biomol. Chem. 2018; 16: 832