Synthesis 2023; 55(04): 670-682
DOI: 10.1055/a-1953-1656
paper

Both Amide-Bearing α- and β-Amino Acids from Natural Aspartic Acid Are Efficient Organocatalysts for Enantioselective Aldol Reactions

Gen-Fa Wen
a   Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. of China
,
Rui Zhang
a   Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. of China
,
Chu-Yu Zhang
b   Cuiying Honors College, Lanzhou University, Lanzhou 730000, P. R. of China
,
Chao-Shan Da
a   Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. of China
› Author Affiliations


Abstract

This work aims to compare and explore the different catalytic efficiencies of structurally similar α- and β-amino acids in an asymmetric aldol transformation. Interestingly, aspartic acid is not only an α-amino acid, but also a β-amino acid. Thus, by modifying one of the two acidic groups of aspartic acid, two sets of α- and β-amino acids, 14 amino acids in total, were prepared and used as organocatalysts. The two types of amino acid, interestingly, achieved similar high catalytic efficiencies in the asymmetric aldol transformation under different optimal conditions. The ideal β-amino acid, in some cases, even achieved significantly higher enantioselectivity than the ideal α-amino acid, although α-amino acids are extensively demonstrated to be highly efficient organocatalysts in this asymmetric transformation.

Supporting Information



Publication History

Received: 05 July 2022

Accepted after revision: 29 September 2022

Accepted Manuscript online:
29 September 2022

Article published online:
03 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kan SB. J, Kenneth KH, Paterson NL. Angew. Chem. Int. Ed. 2013; 52: 9097
    • 1b Schetter B, Mahrwald R. Angew. Chem. Int. Ed. 2006; 45: 7506

      For recent reviews of asymmetric aldol reactions, see:
    • 2a Yamashita Y, Yasukawa T, Yoo WJ, Kitanosono T, Kobayashi S. Chem. Soc. Rev. 2018; 47: 4388
    • 2b Pansare SV, Paul EK. Chem. Eur. J. 2011; 17: 8770
    • 2c Palomo C, Oiarbide M, García JM. Chem. Soc. Rev. 2004; 33: 65
    • 2d Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 2e Mlynarski J, Paradowska J. Chem. Soc. Rev. 2008; 37: 1502
    • 3a Martins R. dS, Pereira MP, de Castro PP. Bombonato F. I. 2020; 76: 130855
    • 3b Ishihara K, Obayashi R, Gotoh M, Watanabe Y, Kobayashi Y, Ishihara K, Shioiri T, Matsugi M. Tetrahedron Lett. 2020; 61: 151657
    • 3c Emma MG, Tamburrini A, Martinelli A, Lombardo M, Quintavalla A, Trombini C. Catalysts 2020; 10: 649
    • 3d Li H, Da C.-S, Xiao YH, Li X, Su YN. J. Org. Chem. 2008; 73: 7398
    • 4a Bisai V, Bisai A, Singh VK. Tetrahedron 2012; 68: 4541
    • 4b Wang P, Li HF, Zhao JZ, Du ZH, Da C. S. Org. Lett. 2017; 19: 2634
    • 4c Peng FZ, Shao ZH. J. Mol. Catal. A: Chem. 2008; 285: 1
    • 4d Bisaia V, Singh VK. Synlett 2011; 481
    • 5a Gu LQ, Yu ML, Wu XY, Zhang YZ, Zhao G. Adv. Synth. Catal. 2006; 348: 2223
    • 5b List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 6a Juaristi E. Tetrahedron 2021; 88: 132143
    • 6b Siyutkin DE, Kucherenko AS, Zlotin SG. Tetrahedron 2009; 65: 1366
    • 6c Jia YN, Wu FC, Ma X, Zhu GJ, Da CS. Tetrahedron Lett. 2009; 50: 3059
    • 6d Schober L, Ratnam S, Yamashita Y, Adebar N, Pieper M, Berkessel A, Hessel V, Gröger H. Synthesis 2019; 51: 1178
    • 6e Kumar TP, Valve NC, Patro V, Haribabu K. Tetrahedron: Asymmetry 2014; 25: 457
    • 7a Córdova A, Zou W, Dziedzic P, Ibrahem I, Reyes E, Xu Y. Chem. Eur. J. 2006; 12: 5383
    • 7b Wu XY, Jiang ZQ, Shen HM, Lu YX. Adv. Synth. Catal. 2007; 349: 812
    • 7c Jiang ZQ, Liang ZA, Wu XY, Lu YX. Chem. Commun. 2006; 2801
    • 7d Peng YY, Wang Q, He JQ, Cheng JP. Chin. J. Chem. 2008; 26: 1454
    • 7e Kanemitsu T, Umehara A, Miyazaki M, Nagata K, Itoh T. Eur. J. Org. Chem. 2011; 993
    • 7f Jiang ZQ, Yang H, Han X, Luo J, Wong MW, Lu YX. Org. Biomol. Chem. 2010; 8: 1368
    • 7g Mosteirín NF, Concellon C, Amo V. d. Org. Lett. 2016; 18: 4266
    • 7h Dziedzic P, Zou WB, Ibrahem I, Sunden H, Córdova A. Tetrahedron Lett. 2006; 47: 6657
    • 7i Fotaras S, Kokotos CG, Kokotos G. Org. Biomol. Chem. 2012; 10: 5613
    • 7j Revelou P, Kokotos CG, Moutevelis-Minakakis P. Tetrahedron 2012; 68: 8732
    • 7k Kaplaneris N, Koutoulogenis G, Raftopoulou M, Kokotos CG. J. Org. Chem. 2015; 80: 5464
    • 7l Vlasserou I, Sfetsa M, Gerokonstantis D.-T, Kokotos CG, Moutevelis-Minakakis P. Tetrahedron 2018; 74: 2338
    • 7m Kokotos CG. J. Org. Chem. 2012; 77: 1131
    • 8a Da CS, Che LP, Guo QP, Wu FC, Ma X, Jia YN. J. Org. Chem. 2009; 74: 2541
    • 8b Demuynck AL. W, Vanderleyden J, Selsa BF. Adv. Synth. Catal. 2010; 352: 2421
    • 8c Ma GN, Bartoszewicz A, Ibrahem I, Córdova A. Adv. Synth. Catal. 2011; 353: 3114
    • 8d Gerasimchuk VV, Kucherenko AS, Fakhrutdinov AN, Medvedev MG, Nelyubina YV, Zlotin SG. Eur. J. Org. Chem. 2017; 2540
    • 8e Teo YC, Chua GL. Tetrahedron Lett. 2008; 49: 4235
    • 9a Du ZH, Tao BX, Yuan M, Qin WJ, Xu YL, Wang P, Da CS. Org. Lett. 2020; 22: 4444
    • 9b Wu FC, Da CS, Du ZX, Guo QP, Li WP, Yi L, Jia YN, Ma X. J. Org. Chem. 2009; 74: 4812
    • 9c Triandafillidi I, Bisticha A, Voutyritsa E, Galiatsatou G, Kokotos CG. Tetrahedron 2015; 71: 932
    • 9d Kon K, Kohari Y, Murata M. Heterocycles 2019; 99: 841
    • 9e Theodorou A, Papadopoulos GN, Kokotos CG. Tetrahedron 2013; 69: 5438
    • 10a Kano T, Takai J, Tokuda O, Maruoka K. Angew. Chem. Int. Ed. 2005; 44: 3055
    • 10b Kano T, Tokkuda O, Takai J, Maruoka K. Chem. Asian J. 2006; 1: 210
    • 10c Kano T, Tokuda O, Maruoka K. Tetrahedron Lett. 2006; 47: 7423
    • 10d Psarra A, Kokotos CG, Moutevelis-Minakakis P. Tetrahedron 2014; 70: 608
    • 10e Bisticha A, Triandafillidi I, Kokotos CG. Tetrahedron: Asymmetry 2015; 26: 102
    • 10f Ahmetlli A, Spiliopoulou N, Magi-Oikonomopoulou A, Gerokonstantis D.-T, Moutevelis-Minakakis P, Kokotos CG. Tetrahedron 2018; 74: 5987
    • 11a Schaffer S, Kim HW. Biomol. Ther. 2018; 26: 225
    • 11b Mukaiyama T, Shiina I, Iwadare H, Saitoh M, Nishimura T, Ohkawa N, Sakoh H, Nishimura K, Tani YI, Hasegawa M, Yamada K, Saitoh K. Chem. Eur. J. 1999; 5: 121
    • 13a Dziedzic P, Córdova A. Tetrahedron: Asymmetry 2007; 18: 1033
    • 13b Wu CL, Fu XK, Li S. Tetrahedron: Asymmetry 2011; 22: 1063
    • 13c Tsakos M, Kokotos CG. Eur. J. Org. Chem. 2012; 576
    • 13d Kokotos CG. Org. Lett. 2013; 15: 2406
    • 13e Tsakos M, Kokotos CG, Kokotos G. Adv. Synth. Catal. 2012; 354: 740
    • 13f Schiza A, Spiliopoulou N, Shahu A, Kokotos CG. New J. Chem. 2018; 42: 18844
    • 13g Kokotos CG, Kokotos L, Limnios D, Triggidou D, Trifonidou M, Kokotos G. Org. Biomol. Chem. 2011; 9: 3386
    • 14a Davies SG, Sheppard RL, Smith AD, Thomson JE. Chem. Commun. 2005; 3802
    • 14b Buchschacher VP, Cassal JM, Fiirst A, Meier W. Helv. Chim. Acta 1977; 60: 268
    • 14c Limbach M. Tetrahedron Lett. 2006; 47: 3843
    • 14d Mitsumori S, Zhang H, Cheong PH.-Y, Houk KN. Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 1040
    • 14e Zhang H, Mitsumori S, Utsumi N, Imai M, Garcia-Delgado N, Mifsud M, Albertshofer K, Cheong PH.-Y, Houk KN, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2008; 130: 875
    • 14f Garg Y, Tanaka F. Org. Lett. 2020; 22: 4542
    • 15a Dwivedi N, Bisht SS, Tripathi RP. Carbohydr. Res. 2006; 341: 2737
    • 15b Armstrong A, Bhonoah Y, White AJ. P. J. Org. Chem. 2009; 74: 5041
    • 15c Gazvoda M, Prantz KH, Barth R, Felzmann W, Pevec A, Kosmrlj J. Org. Lett. 2015; 17: 512
  • 16 Wang R, Xu EJ, Su ZM, Duan HF, Wang JJ, Xue LQ, Lin YJ, Li YX, Wei ZL, Yang QB. RSC Adv. 2018; 8: 28376
    • 17a Moteki SH, Maruyama I, Nakayama K, Li HB, Petrova G, Maeda S, Morokuma K, Maruoka K. Chem. Asian J. 2015; 10: 2112
    • 17b Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H. Angew. Chem. Int. Ed. 2004; 43: 1983
    • 17c Almasi D, Alonso D, Balaguer A.-N, Najera C. Adv. Synth. Catal. 2009; 351: 1123
    • 18a Xia AB, Zhang C, Zhang YP, Guo YJ, Zhang XL, Li ZB, Xu DQ. Org. Biomol. Chem. 2015; 13: 9593
    • 18b Lombardo M, Chiarucci M, Quintavalla A, Trombini C. Adv. Synth. Catal. 2009; 351: 2801
    • 18c Xiao J, Xu FX, Lu YP, Loh T.-P. Org. Lett. 2010; 12: 1220
    • 18d Dong XW, Yang Y, Che JX, Zuo J, Li XH, Gao L, Hu YZ, Liu XY. Green Chem. 2018; 20: 4085
  • 19 Zilkha A, Lerman N. Can. J. Chem. 1964; 43: 1226
  • 20 Li B, Berliner M, Buzon R, Chiu CK. F, Colgan ST, Kaneko T, Keene N, Kissel W, Le T, Leeman KR, Marquez B, Morris R, Newell L, Wunderwald S, Witt M, Weaver J, Zhang ZJ, Zhang ZL. J. Org. Chem. 2006; 71: 9045
  • 21 Herrmann V, Röhm KH, Schneider F. FEBS Lett. 1974; 39: 214
  • 22 Sanniez WH. K, Pilpel N. J. Pharm. Sci. 1980; 69: 5
  • 23 Dua WJ, Risley JM. Org. Biomol. Chem. 2003; 1: 1900
  • 24 Uchida H, Miyata K, Oba M, Ishii T, Suma T, Itaka K, Nishiyama N, Kataoka K. J. Am. Chem. Soc. 2011; 133: 15524
  • 25 Bhati M, Kumari K, Easwar SE. J. Org. Chem. 2018; 83: 8225
  • 26 Agarwal J, Peddinti RK. Eur. J. Org. Chem. 2012; 6390
  • 27 Peng YY, Liu H, Cui M, Cheng JP. Chin. J. Chem. 2007; 25: 962
  • 28 Shiomi T, Adachi T, Ito JI, Nishiyama H. Org. Lett. 2009; 11: 1011