Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(06): 967-976
DOI: 10.1055/a-1953-1849
DOI: 10.1055/a-1953-1849
paper
Virtual collection Science of Synthesis Early Career Advisory Board
Synthesis of Benzoazepinone Derivatives via Photoredox Deaminative Radical Cascade Alkylation of 1,7-Dienes and 1,7-Enynes
We are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; INCT Catálise, Grants No 444061/2018-5 and Universal Project 405052/2021-9), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; 21/06099-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and GSK for financial support.
Abstract
A deaminative alkyl radical cascade cyclization of 1,7-dienes is described under visible-light photocatalysis. This method delivers a family of benzoazepinones (benzazepinones) and occurs under mild reaction conditions to access a broad substrate scope with excellent functional group tolerance and good yields. This protocol has also been extended to 1,7-enynes, furnishing a representative collection of cyclopentaquinolinones.
Key words
benzazepinones - photocatalysis - cyclopentaquinolinones - cyclization - 1,7-enynes - N-heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1953-1849.
- Supporting Information
Publication History
Received: 23 August 2022
Accepted after revision: 29 September 2022
Accepted Manuscript online:
29 September 2022
Article published online:
20 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
-
1a
Brown DG,
Boström J.
J. Med. Chem. 2016; 59: 4443
- 1b Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
- 1c Cabrele C, Reiser O. J. Org. Chem. 2016; 81: 10109
- 2a Walsh CT. Tetrahedron Lett. 2015; 56: 3075
- 2b Prandi C, Occhiato EG. Pest Manag. Sci. 2019; 75: 2385
- 2c Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
- 3a Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, 2nd ed. Pozharskii AF, Soldatenkov AT, Katritzky AR. Wiley; Chichester: 2011
- 3b Mlostoń G. Chem. Heterocycl. Compd. (Engl. Transl.) 2017; 53: 1
- 4a de la Torre BG, Albericio F. Molecules 2020; 25: 745
-
4b
Jampilek J.
Molecules 2019; 24: 3839
- 4c Qi Y, Wang J, Kou Y, Pang H, Zhang S, Li N, Liu C, Weng Z, Jian X. Nat. Commun. 2019; 10: 2107
- 5a Huang H.-M, Garduño-Castro MH, Morrill C, Procter DJ. Chem. Soc. Rev. 2019; 48: 4626
- 5b Hung K, Hu X, Maimone TJ. Nat. Prod. Rep. 2018; 35: 174
- 5c Huang M.-H, Hao W.-J, Jiang B. Chem. Asian J. 2018; 13: 2958
- 5d Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
- 6a Festa AA, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2019; 48: 4401
- 6b Correia JT. M, Santos MS, Pissinati EF, Da Silva GP, Paixão MW. Chem. Rec. 2021; 21: 2666
- 7a Szekacs B, Vajo Z, Dachman W. Acta Physiol. Hung. 1996; 84: 361
- 7b Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR, Jiang JP, Liang M, Wang GB, Liu ZR, Geng RW. N. Engl. J. Med. 2006; 354: 131
- 7c Methot JL, Fischer C, Li C, Rivkin A, Ahearn SP, Brown WC, Kattar S, Kelley E, Mampreian DM, Schell A, Rosenau A, Zhou H, Ball R, Deshmukh SV, Jeliazkova-Mecheva VV, Diaz D, Moy LY, Kenific CM, Moxham C, Shah S, Nuthall H, Szewczak AA, Hill A, Hughes B, Smotrov N, Munoz B, Miller TA, Shearman MS. Bioorg. Med. Chem. Lett. 2015; 25: 3495
- 8a Wang H, Wang B, Sun S, Cheng J. Org. Chem. Front. 2018; 5: 2547
- 8b Zhang XY, Wei Y, Shi M. Org. Biomol. Chem. 2017; 15: 9616
- 8c Yu LZ, Xu Q, Tang XY, Shi M. ACS Catal. 2016; 6: 526
- 8d Hu H, Peng Y, Yu T, Cheng S, Luo S, Zhu Q. Org. Lett. 2021; 23: 3636
- 8e Zhang XY, Wu XY, Zhang B, Wei Y, Shi M. ACS Catal. 2021; 11: 4372
- 8f Zhang XY, Ning C, Long YJ, Wei Y, Shi M. Org. Lett. 2020; 22: 5212
- 8g Zhao Y, Chen JR, Xiao WJ. Org. Lett. 2018; 20: 224
- 9a Scott E, Peter F, Sanders J. Appl. Microbiol. Biotechnol. 2007; 75: 751
- 9b Kankate RS, Gide PS, Belsare DP. Arab. J. Chem. 2019; 12: 2224
- 10a He FS, Ye S, Wu J. ACS Catal. 2019; 9: 8943
- 10b Correia JT. M, Fernandes VA, Matsuo BT, Delgado JA. C, de Souza WC, Paixão MW. Chem. Commun. 2020; 56: 503
- 10c Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
- 10d James MJ, Strieth-Kalthoff F, Sandfort F, Klauck FJ. R, Wagener F, Glorius F. Chem. Eur. J. 2019; 25: 8240
- 11 Klauck FJ. R, James MJ, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336
- 12a Correia JT. M, Piva da Silva G, André E, Paixão MW. Adv. Synth. Catal. 2019; 361: 5558
- 12b Correia JT. M, Piva da Silva G, Kisukuri CM, André E, Pires B, Carneiro PS, Paixão MW. J. Org. Chem. 2020; 85: 9820
- 13a Patel M, McHugh RJ. Jr, Cordova BC, Klabe RM, Bacheler LT, Erickson-Viitanen S, Rodgers JD. Bioorg. Med. Chem. Lett. 2001; 11: 1943
- 13b Kwak S.-H, Shin S, Lee J.-H, Shim J.-K, Kim M, Lee S.-D, Lee A, Bae J, Park J.-H, Abdelrahman A, Müller CE, Cho SK, Kang S.-G, Bae MA, Yang JY, Ko H, Kim Y.-C. Eur. J. Med. Chem. 2018; 151: 462
- 14a Zhang J, Liu Z, Yin Z, Yang X, Ma Y, Szostak R, Szostak M. Org. Lett. 2020; 22: 9500
- 14b Buffat MG. P, Thomas EJ. Tetrahedron 2016; 72: 451
- 15a Maier AF. G, Tussing S, Zhu H, Wicker G, Tzvetkova P, Flörke U, Daniliuc CG, Grimme S, Paradies J. Chem. Eur. J. 2018; 24: 16287
- 15b Luo Q.-L, Lv L, Li Y, Tan J.-P, Nan W, Hui Q. Eur. J. Org. Chem. 2011; 2011: 6916
- 15c Koester DC, Werz DB. Beilstein J. Org. Chem. 2012; 8: 675
- 16 Delgado JA. C, Correia JT. M, Pissinati EF, Paixão MW. Org. Lett. 2021; 23: 5251