Subscribe to RSS
DOI: 10.1055/a-1954-3823
Emission-Tunable and Elastically Bendable Organic Polymorphs for Lasing Media
Abstract
Crystal engineering has served as a powerful strategy to grow organic molecular crystals with different physical behaviors and this strategy has been also attempted for a purpose to grow crystals with desired mechanical properties; however, it is quite challenging to endow all different crystal phases constructed by the same compound with unique reversible deformation, such as elastic bending. We herein report a rare example of all-polymorph elastic crystals accompanied by precisely tunable emission colors. Single-crystal structure analyses and their optical and mechanical properties have been fully investigated on all polymorphs. The color-tunable amplified spontaneous emissions of both the straight and elastically bent polymorphs demonstrate the applicability of these elastic polymorphs in future wearable optoelectronic devices.
Key words
organic polymorphs - crystal structures - elastic deformation - mechanical properties - amplified spontaneous emissionPublication History
Received: 02 September 2022
Accepted after revision: 29 September 2022
Accepted Manuscript online:
04 October 2022
Article published online:
28 October 2022
© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Nesse WD. Introduction to Mineralogy. Oxford University Press; New York: 1999
- 2 Bragg WH. Nature 1912; 90: 360
- 3 Zhang C, Zhao YS, Yao J. Phys. Chem. Chem. Phys. 2011; 13: 9060
- 4 Zhang W, Yan Y, Gu J, Yao J, Zhao YS. Angew. Chem. Int. Ed. 2015; 54: 7125
- 5 Wang Y, Wu H, Zhu W, Zhang X, Liu Z, Wu Y, Feng C, Dang Y, Dong H, Fu H, Hu W. Angew. Chem. Int. Ed, 2021; 60: 6344
- 6 Liu D, Liao Q, Peng Q, Gao H, Sun Q, De J, Gao C, Miao Z, Qin Z, Yang J, Fu H, Shuai Z, Dong H, Hu W. Angew. Chem. Int. Ed. 2021; 60: 20274
- 7 Lv Z, Man Z, Xu Z, Fu L, Li S, Zhang Y, Fu H. Adv. Opt. Mater. 2021; 9: 2100598
- 8 Ghosh S, Reddy CM. Angew. Chem. Int. Ed. 2012; 51: 10319
- 9 Ahmed E, Karothu DP, Naumov P. Angew. Chem. Int. Ed. 2018; 57: 8837
- 10 Annadhasan M, Karothu DP, Chinnasamy R, Catalano L, Ahmed E, Ghosh S, Naumov P, Chandrasekar R. Angew. Chem. Int. Ed. 2020; 59: 13821
- 11 Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Angew. Chem. Int. Ed. 2020; 59: 13852
- 12 Hayashi S, Ishiwari F, Fukushima T, Mikage S, Imamura Y, Tashiro M, Katouda M. Angew. Chem. Int. Ed. 2020; 59: 16195
- 13 Hayashi S, Koizumi T. Chem. Eur. J. 2018; 24: 8507
- 14 Catalano L, Karothu DP, Schramm S, Ahmed E, Rezgui R, Barber TJ, Famulari A, Naumov P. Angew. Chem. Int. Ed. 2018; 57: 17254
- 15 Liu H, Lu Z, Tang B, Qu C, Zhang Z, Zhang H. Angew. Chem. Int. Ed. 2020; 59,: 12944
- 16 Saha S, Desiraju GR. Chem. Commun. 2017; 53: 6371
- 17 Saha S, Desiraju GR. J. Am. Chem. Soc. 2017; 139: 1975
- 18 Kim T, Al-Muhanna MK, Al-Suwaidan SD, Al-Kaysi RO, Bardeen CJ. Angew. Chem. Int. Ed. 2013; 52: 6889
- 19 Wang H, Chen P, Wu Z, Zhao J, Sun J, Lu R. Angew. Chem. Int. Ed. 2017; 56: 9463
- 20 Ahmed E, Karothu DP, Warren M, Naumov P. Nat. Commun. 2019; 10: 3723
- 21 Chung H, Dudenko D, Zhang F, DʼAvino G, Ruzie C, Richard A, Schweicher G, Cornil J, Beljonne D, Geerts Y, Diao Y. Nat. Commun. 2018; 9: 278
- 22 Good JT, Burdett JJ, Bardeen CJ. Small 2009; 5: 2902
- 23 Halabi JM, Ahmed E, Catalano L, Karothu DP, Rezgui R, Naumov P. J. Am. Chem. Soc. 2019; 141: 14966
- 24 Karothu DP, Mahmoud Halabi J, Li L, Colin-Molina A, Rodriguez-Molina B, Naumov P. Adv. Mater. 2020; 32: 1906216
- 25 Liu H, Ye K, Zhang Z, Zhang H. Angew. Chem. Int. Ed. 2019; 58: 19081
- 26 Lu Z, Zhang Y, Liu H, Ye K, Liu W, Zhang H. Angew. Chem. Int. Ed. 2020; 59: 4299
- 27 Nath NK, Pejov L, Nichols SM, Hu C, Saleh N, Kahr B, Naumov P. J. Am. Chem. Soc. 2014; 136: 2757
- 28 Wang L, Wang K, Zou B, Ye K, Zhang H, Wang Y. Adv. Mater. 2015; 27: 2918
- 29 Yan D, Evans DG. Mater. Horiz. 2014; 1: 46
- 30 Zhen YG, Dong HL, Jiang L, Hu WP. Chin. Chem. Lett. 2016; 27: 1330
- 31 Cao L, Tang B, Yu X, Ye K, Zhang H. CrystEngComm 2021; 23: 5758
- 32 Chu X, Lu Z, Tang B, Liu B, Ye K, Zhang H. J. Phys. Chem. Lett. 2020; 11: 5433
- 33 Liu B, Di Q, Liu W, Wang C, Wang Y, Zhang H. J. Phys. Chem. Lett. 2019; 10: 1437
- 34 Huang R, Tang B, Ye K, Wang C, Zhang H. Adv. Opt. Mater. 2019; 7: 1900927
- 35 Huang R, Wang C, Wang Y, Zhang H. Adv. Mater. 2018; 30: 1800814
- 36 Liu B, Lu Z, Tang B, Liu H, Liu H, Zhang Z, Ye K, Zhang H. Angew. Chem. Int. Ed. 2020; 59: 23117
- 37 Tang B, Liu B, Liu H, Zhang H. Adv. Funct. Mater. 2020; 30: 2004116
- 38 Tang S, Ye K, Zhang H. Angew. Chem. Int. Ed. 2022; 61: e202210128
- 39 Di Q, Miao X, Lan L, Yu X, Liu B, Yi Y, Naumov P, Zhang H. Nat. Commun. 2022; 13: 5280
- 40 Chao J, Liu H, Zhang H. CCS Chem. 2020; 2: 2569
- 41 The crystal was irradiated by the third harmonic (355 nm) of a Nd : YAG laser at a repetition rate of 10 Hz and a pulse duration of about 10 ns. The energy of the pumping laser was adjusted by using the calibrated neutral density filters. The beam was focused into a stripe whose shape was adjusted to 3.3 × 0.6 mm2 by using a cylindrical lens and a slit. The edge emission and PL spectra of the crystals were detected using a Maya2000 Pro CCD spectrometer.