CC BY-NC-ND 4.0 · Organic Materials 2022; 4(04): 216-221
DOI: 10.1055/a-1954-3823
Organic Materials in Electronics
Short Communication

Emission-Tunable and Elastically Bendable Organic Polymorphs for Lasing Media

Baolei Tang
a   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
Shiyue Tang
a   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
Kaiqi Ye
a   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
a   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
› Author Affiliations


Abstract

Crystal engineering has served as a powerful strategy to grow organic molecular crystals with different physical behaviors and this strategy has been also attempted for a purpose to grow crystals with desired mechanical properties; however, it is quite challenging to endow all different crystal phases constructed by the same compound with unique reversible deformation, such as elastic bending. We herein report a rare example of all-polymorph elastic crystals accompanied by precisely tunable emission colors. Single-crystal structure analyses and their optical and mechanical properties have been fully investigated on all polymorphs. The color-tunable amplified spontaneous emissions of both the straight and elastically bent polymorphs demonstrate the applicability of these elastic polymorphs in future wearable optoelectronic devices.



Publication History

Received: 02 September 2022

Accepted after revision: 29 September 2022

Accepted Manuscript online:
04 October 2022

Article published online:
28 October 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany