Synlett 2023; 34(02): 149-152 DOI: 10.1055/a-1957-4104
Rapid Access to Functionalized γ-Lactams through Copper-Catalyzed Oxidative Cyclization of Diynes
Ting-Ting Zhang
a
College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Kua-Fei Wei
a
College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Guang-Xin Ru
a
College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Xiu-Hong Zhu
a
College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Li-Xia Xie∗
a
College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Wen-Bo Shen∗
a
College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
› Author Affiliations We are grateful for the financial support from the NNSFC (22001059) and the Top-Notch Talents Program of Henan Agricultural University (30500739).
Abstract
An efficient copper-catalyzed oxidative cyclization of diynes is described. A range of functionalized γ-lactams can be readily constructed by using this protocol. This copper-catalyzed oxidative process proceeds through an alkyne oxidation, carbene/alkyne metathesis, and donor–donor carbene oxidation sequence. The use of readily available substrates, high flexibility, a simple procedure, and mild reaction conditions render the procedure a viable alternative for the preparation of functionalized γ-lactams.
Key words
copper catalysis -
diynes -
oxidation -
carbene/alkyne metathesis -
γ-lactams
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1957-4104.
Supporting Information
Publication History
Received: 13 September 2022
Accepted after revision: 07 October 2022
Accepted Manuscript online: 07 October 2022
Article published online: 21 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
For selected examples, see:
1a
Feng Z,
Chu F,
Guo Z,
Sun P.
Bioorg. Med. Chem. Lett. 2009; 19: 2270
1b
Grunwald C,
Rundfeldt C,
Lankau H.-J,
Arnold T,
Höfgen N,
Dost R,
Egerland U,
Hofmann H.-J,
Unverferth K.
J. Med. Chem. 2006; 49: 1855
1c
Reddy TR. K,
Li C,
Guo X,
Myrvang HK,
Fischer PM,
Dekker LV.
J. Med. Chem. 2011; 54: 2080
1d
Ewies EF,
Elsayed NF,
Boulos LS,
Soliman A.-MM.
J. Chem. Res. 2014; 38: 325
1e
Lampe JW,
Chou Y.-L,
Hanna RG,
Di Meo SV,
Erhardt PW,
Hagedorn AA. III,
Ingebretsen WR,
Cantor E.
J. Med. Chem. 1993; 36: 1041
For recent selected examples, see:
2a
Kweon J,
Chang S.
Angew. Chem. Int. Ed. 2021; 60: 2909
2b
Fukuyama T,
Nakashima N,
Okada T,
Ryu I.
J. Am. Chem. Soc. 2013; 135: 1006
2c
Holstein PM,
Dailler D,
Vantourout J,
Shaya J,
Millet A,
Baudoin O.
Angew. Chem. Int. Ed. 2016; 55: 2805
2d
del Corte X,
Maestro A,
Vicario J,
Martinez de Marigorta E,
Palacios F.
Org. Lett. 2018; 20: 317
2e
Cao X,
Cheng X,
Xuan J.
Org. Lett. 2018; 20: 449
2f
Shao N.-Q,
Chen Y.-H,
Li C,
Wang D.-H.
Org. Lett. 2020; 22: 7141
2g
Torelli A,
Whyte A,
Polishchuk I,
Bajohr J,
Lautens M.
Org. Lett. 2020; 22: 7915
3a
Ye L,
Zhang G,
Zhang L.
J. Am. Chem. Soc. 2010; 132: 3258
3b
Li L,
Shu C,
Zhou B,
Yu Y.-F,
Xiao X.-Y,
Ye L.-W.
Chem. Sci. 2014; 5: 4057
3c
Vasu D,
Hung H.-H,
Bhunia S,
Gawade SA,
Das A,
Liu R.-S.
Angew. Chem. Int. Ed. 2011; 50: 6911
3d
Chen J.-J,
Liu J.-Y,
Cao X.-X,
Hu J.-X,
Lu X,
Shen W.-B,
Sun Q,
Song R.-J,
Li J.-H.
Org. Chem. Front. 2022; 9: 5168
For reviews, see:
4a
Zheng Z,
Ma X,
Cheng X,
Zhao K,
Gutman K,
Li T,
Zhang L.
Chem. Rev. 2021; 121: 8979
4b
Zhang L.
Acc. Chem. Res. 2014; 47: 877
4c
Yeom H.-S,
Shin S.
Acc. Chem. Res. 2014; 47: 966
4d
Dorel R,
Echavarren AM.
Chem. Rev. 2015; 115: 9028
4e
Qian D,
Zhang J.
Chem. Soc. Rev. 2015; 44: 677
4f
Ye L.-W,
Zhu X.-Q,
Sahani RL,
Xu Y,
Qian P.-C,
Liu R.-S.
Chem. Rev. 2020; 121: 9039
4g
Shen W.-B,
Tang X.-T.
Org. Biomol. Chem. 2019; 17: 7106
4h
Ru G.-X,
Zhang T.-T,
Zhang M,
Jiang X.-L,
Wan Z.-K,
Zhu X.-H,
Shen W.-B,
Gao G.-Q.
Org. Biomol. Chem. 2021; 19: 5274
4i
Huple DB,
Ghorpade S,
Liu R.-S.
Adv. Synth. Catal. 2016; 358: 1348
4j
Xiao J,
Li X.
Angew. Chem. Int. Ed. 2011; 50: 7226
4k
Bhunia S,
Ghosh P,
Patra SR.
Adv. Synth. Catal. 2020; 362: 3664
5 For a recent selected example, see:
Liu R,
Winston-McPherson GN,
Yang Z.-Y,
Zhou X,
Song W,
Guzei IA,
Xu X,
Tang W.
J. Am. Chem. Soc. 2013; 135: 8201
6
Shen W.-B,
Zhang T.-T,
Zhang M,
Wu J.-J,
Jiang X.-L,
Ru G.-X,
Gao G.-Q,
Zhu X.-H.
Org. Chem. Front. 2021; 8: 4960
7
Nösel P,
Nunes dos Santos Comprido L,
Lauterbach T,
Rudolph M,
Rominger F,
Hashmi AS. K.
J. Am. Chem. Soc. 2013; 135: 15662
For recent selected examples, see:
8a
Zheng Z,
Zhang L.
Org. Chem. Front. 2015; 2: 1556
8b
Ye L,
Wang Y,
Aue DH,
Zhang L.
J. Am. Chem. Soc. 2012; 134: 31
For recent selected examples, see:
9a
Ji K,
Liu X,
Du B,
Yang F,
Gao J.
Chem. Commun. 2015; 51: 10318
9b
Li J,
Xing H.-W,
Yang F,
Chen Z.-S,
Ji K.
Org. Lett. 2018; 20: 4622
10
Hamada N,
Yamaguchi A,
Inuki S,
Oishi S,
Ohno H.
Org. Lett. 2018; 20: 4401
11
Zhao J,
Xu W,
Xie X,
Sun N,
Li X,
Liu Y.
Org. Lett. 2018; 20: 5461
For recent selected examples, see:
12a
Skaria M,
Hsu Y.-C,
Jiang Y.-T,
Lu M.-Y,
Kuo T.-C,
Cheng M.-J,
Liu R.-S.
Org. Lett. 2020; 22: 4478
12b
Pandit YB,
Liu R.-S.
Adv. Synth. Catal. 2020; 362: 3183
For recent selected examples, see:
13a
Shen W.-B,
Sun Q,
Li L,
Liu X,
Zhou B,
Yan J.-Z,
Lu X,
Ye L.-W.
Nat. Commun. 2017; 8: 1748
13b
Shu C,
Shi C.-Y,
Sun Q,
Zhou B,
Li T.-Y,
He Q,
Lu X,
Liu R.-S,
Ye L.-W.
ACS Catal. 2019; 9: 1019
13c
Liu X,
Wang Z.-S,
Zhai T.-Y,
Luo C,
Zhang Y.-P,
Chen Y.-B,
Deng C,
Liu R.-S,
Ye L.-W.
Angew. Chem. Int. Ed. 2020; 59: 17984
14
Prabagar B,
Mallick RK,
Prasad R,
Gandon V,
Sahoo AK.
Angew. Chem. Int. Ed. 2019; 58: 2365
For recent selected examples, see:
15a
Shen W.-B,
Tang X.-T,
Zhang T.-T,
Liu S.-Y,
He J.-M,
Su T.-F.
Org. Lett. 2020; 22: 6799
15b
Shen W.-B,
Tang X.-T,
Zhang T.-T,
Lv D.-C,
Zhao D,
Su T.-F,
Meng L.
Org. Lett. 2021; 23: 1285
15c
Ru G.-X,
Zhang M,
Zhang T.-T,
Jiang X.-L,
Gao G.-Q,
Zhu X.-H,
Wang S,
Fan C.-L,
Li X,
Shen W.-B.
Org. Chem. Front. 2022; 9: 2621
15d
Zheng Y,
Zhang T.-T,
Shen W.-B.
Org. Biomol. Chem. 2021; 19: 9688
15e
Gao G.-Q,
Ma G,
Jiang X.-L,
Liu Q,
Fan C.-L,
Lv D.-C,
Su H,
Ru G.-X,
Shen W.-B.
Org. Biomol. Chem. 2022; 20: 5035
15f
Tang X.-T,
Yang F,
Zhang T.-T,
Liu Y.-F,
Liu S.-Y,
Su T.-F,
Lv D.-C,
Shen W.-B.
Catalysts 2020; 10: 350
16
Prabagar B,
Nayak S,
Prasad R,
Sahoo AK.
Org. Lett. 2016; 18: 3066
17
4-Benzoyl-3-phenyl-1-tosyl-1,5-dihydro-2H -pyrrol-2-one (3a); Typical Procedure
A mixture of sulfonamide 1a (0.2 mmol, 77.0 mg), 3,5-dichloropyridine N -oxide (2a , 0.6 mmol, 98.4 mg), and Cu(MeCN)4 PF6 (0.02 mmol, 7.5 mg) in DCE (4.0 mL) was heated at 80 °C (heating mantle temperature) until the reaction was complete (TLC; typically 2 h). The mixture was then concentrated, and the residue was purified by chromatography [silica gel, PE–EtOAc (5:1)] to give a pale-yellow oil; yield: 71.2 mg (85%).
IR (neat): 2923, 1724, 1653, 1596, 1493, 1448, 1365, 1328, 1254, 1188, 1172, 1115, 1090, 963, 667 cm–1 . 1 H NMR (400 MHz, CDCl3 ): δ = 8.04 (d, J = 7.6 Hz, 2 H), 7.67 (d, J = 7.3 Hz, 2 H), 7.46 (t, J = 6.8 Hz, 1 H), 7.37 (d, J = 7.6 Hz, 2 H), 7.29–7.26 (m, 4 H), 7.21–7.13 (m, 3 H), 4.80 (s, 2 H), 2.44 (s, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 192.5, 166.6, 147.6, 145.6, 136.4, 134.8, 134.4, 134.2, 129.9, 129.7, 129.4, 129.2, 128.7, 128.6, 128.4, 128.3, 50.6, 21.7. HRMS (ESI): m/z [M + H]+ calcd for C24 H20 NO4 S: 418.1108; found: 418.1106.