CC BY-NC-ND 4.0 · TH Open 2022; 06(04): e396-e407
DOI: 10.1055/a-1957-6817
Review Article

Plasmin Inhibitor in Health and Diabetes: Role of the Protein as a Therapeutic Target

Basmah Alsayejh
1   Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
2   Ministry of Education, Riyadh, Kingdom of Saudi Arabia
,
Noppadol Kietsiriroje
1   Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
3   Endocrinology and Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
,
Mansour Almutairi
1   Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
4   General Directorate of Medical Services, Ministry of Interior, Kingdom of Saudi Arabia
,
Katie Simmons
1   Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
,
Nikoletta Pechlivani
1   Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
,
Sreenivasan Ponnambalam
5   School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
,
1   Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, Leeds, United Kingdom
› Author Affiliations

Abstract

The vascular obstructive thrombus is composed of a mesh of fibrin fibers with blood cells trapped in these networks. Enhanced fibrin clot formation and/or suppression of fibrinolysis are associated with an increased risk of vascular occlusive events. Inhibitors of coagulation factors and activators of plasminogen have been clinically used to limit fibrin network formation and enhance lysis. While these agents are effective at reducing vascular occlusion, they carry a significant risk of bleeding complications. Fibrin clot lysis, essential for normal hemostasis, is controlled by several factors including the incorporation of antifibrinolytic proteins into the clot. Plasmin inhibitor (PI), a key antifibrinolytic protein, is cross-linked into fibrin networks with higher concentrations of PI documented in fibrin clots and plasma from high vascular risk individuals. This review is focused on exploring PI as a target for the prevention and treatment of vascular occlusive disease. We first discuss the relationship between the PI structure and antifibrinolytic activity, followed by describing the function of the protein in normal physiology and its role in pathological vascular thrombosis. Subsequently, we describe in detail the potential use of PI as a therapeutic target, including the array of methods employed for the modulation of protein activity. Effective and safe inhibition of PI may prove to be an alternative and specific way to reduce vascular thrombotic events while keeping bleeding risk to a minimum.

Key Points

  • Plasmin inhibitor (PI) is a key protein that inhibits fibrinolysis and stabilizes the fibrin network.

  • This review is focused on discussing mechanistic pathways for PI action, role of the molecule in disease states, and potential use as a therapeutic target.

Author Contributions

B.A. and N.K. were responsible for drafting and writing of the manuscript, searching of literature, and interpreting data. M.A. and K.S. were responsible for writing part of the manuscript and provided helpful feedback on specific sections. R.A.A. was responsible for drafting and writing the manuscript and the critical revision of intellectual content. N.P. and S.P. contributed to critically reviewing and editing the manuscript. All authors approved the version for publication.


Supplementary Material



Publication History

Received: 05 March 2022

Accepted: 23 September 2022

Accepted Manuscript online:
09 October 2022

Article published online:
18 November 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 WHO. Cardiovascular diseases 2015 [cited 2016 2016 20 April]. Accessed October 20, 2022 at: http://www.who.int/mediacentre/factsheets/fs317/en/
  • 2 Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 2005; 26 (02) 19-39
  • 3 King R, Ajjan R. Hypoglycaemia, thrombosis and vascular events in diabetes. Expert Rev Cardiovasc Ther 2016; 14 (10) 1099-1101
  • 4 Kietsiriroje N, Ariëns RAS, Ajjan RA. Fibrinolysis in acute and chronic cardiovascular disease. Semin Thromb Hemost 2021; 47 (05) 490-505
  • 5 Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res 2010; 7 (04) 260-273
  • 6 Ajjan RA, Ariëns RA. Cardiovascular disease and heritability of the prothrombotic state. Blood Rev 2009; 23 (02) 67-78
  • 7 Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol 2017; 16 (01) 34
  • 8 Sumaya W, Wallentin L, James SK. et al. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: a PLATO substudy. Eur Heart J 2018; 39 (13) 1078-1085
  • 9 Sumaya W, Wallentin L, James SK. et al. Impaired fibrinolysis predicts adverse outcome in acute coronary syndrome patients with diabetes: A PLATO sub-study. Thromb Haemost 2020; 120 (03) 412-422
  • 10 Collen D. Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma. Eur J Biochem 1976; 69 (01) 209-216
  • 11 Moroi M, Aoki N. Isolation and characterization of alpha2-plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator-induced clot lysis. J Biol Chem 1976; 251 (19) 5956-5965
  • 12 Müllertz S, Clemmensen I. The primary inhibitor of plasmin in human plasma. Biochem J 1976; 159 (03) 545-553
  • 13 Coughlin PB. Antiplasmin: the forgotten serpin?. FEBS J 2005; 272 (19) 4852-4857
  • 14 Law RH, Sofian T, Kan WT. et al. X-ray crystal structure of the fibrinolysis inhibitor alpha2-antiplasmin. Blood 2008; 111 (04) 2049-2052
  • 15 Wiman B, Collen D. Purification and characterization of human antiplasmin, the fast-acting plasmin inhibitor in plasma. Eur J Biochem 1977; 78 (01) 19-26
  • 16 Menoud PA, Sappino N, Boudal-Khoshbeen M, Vassalli JD, Sappino AP. The kidney is a major site of alpha(2)-antiplasmin production. J Clin Invest 1996; 97 (11) 2478-2484
  • 17 Kawashita E, Kanno Y, Asayama H. et al. Involvement of α2-antiplasmin in dendritic growth of hippocampal neurons. J Neurochem 2013; 126 (01) 58-69
  • 18 Wiman B, Collen D. On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin. J Biol Chem 1979; 254 (18) 9291-9297
  • 19 Shieh BH, Travis J. The reactive site of human alpha 2-antiplasmin. J Biol Chem 1987; 262 (13) 6055-6059
  • 20 Heeb MJ, Gruber A, Griffin JH. Identification of divalent metal ion-dependent inhibition of activated protein C by alpha 2-macroglobulin and alpha 2-antiplasmin in blood and comparisons to inhibition of factor Xa, thrombin, and plasmin. J Biol Chem 1991; 266 (26) 17606-17612
  • 21 Brower MS, Harpel PC. Proteolytic cleavage and inactivation of alpha 2-plasmin inhibitor and C1 inactivator by human polymorphonuclear leukocyte elastase. J Biol Chem 1982; 257 (16) 9849-9854
  • 22 Rau JC, Beaulieu LM, Huntington JA, Church FC. Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost 2007; 5 (Suppl. 01) 102-115
  • 23 Hortin G, Fok KF, Toren PC, Strauss AW. Sulfation of a tyrosine residue in the plasmin-binding domain of alpha 2-antiplasmin. J Biol Chem 1987; 262 (07) 3082-3085
  • 24 Abdul S, Leebeek FW, Rijken DC, Uitte de Willige S. Natural heterogeneity of α2-antiplasmin: functional and clinical consequences. Blood 2016; 127 (05) 538-545
  • 25 Sumi Y, Ichikawa Y, Nakamura Y, Miura O, Aoki N. Expression and characterization of pro alpha 2-plasmin inhibitor. J Biochem 1989; 106 (04) 703-707
  • 26 Lee KN, Jackson KW, Christiansen VJ, Chung KH, McKee PA. A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004; 103 (10) 3783-3788
  • 27 Bangert K, Johnsen AH, Christensen U, Thorsen S. Different N-terminal forms of alpha 2-plasmin inhibitor in human plasma. Biochem J 1993; 291 (Pt 2): 623-625
  • 28 Koyama T, Koike Y, Toyota S, Miyagi F, Suzuki N, Aoki N. Different NH2-terminal form with 12 additional residues of alpha 2-plasmin inhibitor from human plasma and culture media of Hep G2 cells. Biochem Biophys Res Commun 1994; 200 (01) 417-422
  • 29 Rettig WJ, Garin-Chesa P, Healey JH. et al. Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 1993; 53 (14) 3327-3335
  • 30 Levy MT, McCaughan GW, Marinos G, Gorrell MD. Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver 2002; 22 (02) 93-101
  • 31 Lee KN, Jackson KW, Christiansen VJ, Lee CS, Chun JG, McKee PA. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006; 107 (04) 1397-1404
  • 32 Uitte de Willige S, Malfliet JJ, Janssen HL, Leebeek FW, Rijken DC. Increased N-terminal cleavage of alpha-2-antiplasmin in patients with liver cirrhosis. J Thromb Haemost 2013; 11 (11) 2029-2036
  • 33 Lee KN, Lee CS, Tae WC, Jackson KW, Christiansen VJ, McKee PA. Cross-linking of wild-type and mutant alpha 2-antiplasmins to fibrin by activated factor XIII and by a tissue transglutaminase. J Biol Chem 2000; 275 (48) 37382-37389
  • 34 Kimura S, Aoki N. Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor. J Biol Chem 1986; 261 (33) 15591-15595
  • 35 Duval C, Ariëns RAS. Fibrinogen splice variation and cross-linking: effects on fibrin structure/function and role of fibrinogen γ′ as thrombomobulin II. Matrix Biol 2017; 60-61: 8-15
  • 36 Sakata Y, Aoki N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 1982; 69 (03) 536-542
  • 37 Jansen JW, Haverkate F, Koopman J, Nieuwenhuis HK, Kluft C, Boschman TA. Influence of factor XIIIa activity on human whole blood clot lysis in vitro. Thromb Haemost 1987; 57 (02) 171-175
  • 38 Fraser SR, Booth NA, Mutch NJ. The antifibrinolytic function of factor XIII is exclusively expressed through α2-antiplasmin cross-linking. Blood 2011; 117 (23) 6371-6374
  • 39 Holmes WE, Lijnen HR, Collen D. Characterization of recombinant human alpha 2-antiplasmin and of mutants obtained by site-directed mutagenesis of the reactive site. Biochemistry 1987; 26 (16) 5133-5140
  • 40 Lee KN, Jackson KW, Christiansen VJ, Lee CS, Chun JG, McKee PA. Why alpha-antiplasmin must be converted to a derivative form for optimal function. J Thromb Haemost 2007; 5 (10) 2095-2104
  • 41 Lee KN, Jackson KW, Christiansen VJ, Dolence EK, McKee PA. Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor α2-antiplasmin. J Thromb Haemost 2011; 9 (05) 987-996
  • 42 Christiansen VJ, Jackson KW, Lee KN, McKee PA. The effect of a single nucleotide polymorphism on human alpha 2-antiplasmin activity. Blood 2007; 109 (12) 5286-5292
  • 43 Bridge KI, Macrae F, Bailey MA. et al. The alpha-2-antiplasmin Arg407Lys polymorphism is associated with abdominal aortic aneurysm. Thromb Res 2014; 134 (03) 723-728
  • 44 Bronić A, Ferenčak G, Bernat R, Leniček-Krleža J, Dumić J, Dabelić S. Association of fibrinogen and plasmin inhibitor, but not coagulation factor XIII gene polymorphisms with coronary artery disease. J Med Biochem 2021; 40 (02) 138-149
  • 45 Lijnen HR, Holmes WE, van Hoef B, Wiman B, Rodriguez H, Collen D. Amino-acid sequence of human alpha 2-antiplasmin. Eur J Biochem 1987; 166 (03) 565-574
  • 46 Wiman B, Lijnen HR, Collen D. On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen. Biochim Biophys Acta 1979; 579 (01) 142-154
  • 47 Takada Y, Ye X, Simon S. The integrins. Genome Biol 2007; 8 (05) 215
  • 48 Udvardy M, Schwartzott D, Jackson K, McKee PA. Hybrid peptide containing RGDF (Arg-Gly-Asp-Phe) coupled with the carboxy terminal part of alpha 2-antiplasmin capable of inhibiting platelet aggregation and promoting fibrinolysis. Blood Coagul Fibrinolysis 1995; 6 (01) 11-16
  • 49 Udvardy M, Schwartzott D, Jackson K, Posan E, Rak K, McKee PA. RGDFAP: platelet aggregation inhibitory and profibrinolytic hybrid peptide (RGDF coupled with the carboxy terminal part of alpha 2-antiplasmin) enhances plasminogen binding to platelets. Blood Coagul Fibrinolysis 1995; 6 (05) 481-485
  • 50 Wiman B. Affinity-chromatographic purification of human alpha 2-antiplasmin. Biochem J 1980; 191 (01) 229-232
  • 51 Kumada T, Abiko Y. Purification and some properties of rat alpha 2-plasmin inhibitor. Thromb Res 1984; 36 (02) 143-152
  • 52 Kluft C, Los N. Demonstration of two forms of alpha 2-antiplasmin in plasma by modified crossed immunoelectrophoresis. Thromb Res 1981; 21 (1-2): 65-71
  • 53 Wiman B, Nilsson T, Cedergren B. Studies on a form of alpha 2-antiplasmin in plasma which does not interact with the lysine-binding sites in plasminogen. Thromb Res 1982; 28 (02) 193-199
  • 54 Kluft C, Los P, Jie AF. et al. The mutual relationship between the two molecular forms of the major fibrinolysis inhibitor alpha-2-antiplasmin in blood. Blood 1986; 67 (03) 616-622
  • 55 Christensen U, Clemmensen I. Kinetic properties of the primary inhibitor of plasmin from human plasma. Biochem J 1977; 163 (02) 389-391
  • 56 Christensen U, Clemmensen I. Purification and reaction mechanisms of the primary inhibitor of plasmin from human plasma. Biochem J 1978; 175 (02) 635-641
  • 57 Wiman B, Boman L, Collen D. On the kinetics of the reaction between human antiplasmin and a low-molecular-weight form of plasmin. Eur J Biochem 1978; 87 (01) 143-146
  • 58 Clemmensen I, Thorsen S, Müllertz S, Petersen LC. Properties of three different molecular forms of the alpha 2 plasmin inhibitor. Eur J Biochem 1981; 120 (01) 105-112
  • 59 Klingemann HG, Egbring R, Holst F, Gramse M, Havemann K. Digestion of alpha 2-plasmin inhibitor by neutral proteases from human leucocytes. Thromb Res 1981; 24 (5-6): 479-483
  • 60 Sasaki T, Morita T, Iwanaga S. Identification of the plasminogen-binding site of human alpha 2-plasmin inhibitor. J Biochem 1986; 99 (06) 1699-1705
  • 61 Sugiyama N, Sasaki T, Iwamoto M, Abiko Y. Binding site of alpha 2-plasmin inhibitor to plasminogen. Biochim Biophys Acta 1988; 952 (01) 1-7
  • 62 Kolev K, Léránt I, Tenekejiev K, Machovich R. Regulation of fibrinolytic activity of neutrophil leukocyte elastase, plasmin, and miniplasmin by plasma protease inhibitors. J Biol Chem 1994; 269 (25) 17030-17034
  • 63 Lijnen HR. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mosc) 2002; 67 (01) 92-98
  • 64 Lijnen HR, Van Hoef B, Collen D. Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. Biochim Biophys Acta 2001; 1547 (02) 206-213
  • 65 Leebeek FW, Kluft C, Knot EA, Los P, Cohen AF, Six AJ. Plasmin inhibitors in the prevention of systemic effects during thrombolytic therapy: specific role of the plasminogen-binding form of alpha 2-antiplasmin. J Am Coll Cardiol 1990; 15 (06) 1212-1220
  • 66 Lu BG, Sofian T, Law RH, Coughlin PB, Horvath AJ. Contribution of conserved lysine residues in the alpha2-antiplasmin C terminus to plasmin binding and inhibition. J Biol Chem 2011; 286 (28) 24544-24552
  • 67 Uitte de Willige S, Miedzak M, Carter AM. et al. Proteolytic and genetic variation of the alpha-2-antiplasmin C-terminus in myocardial infarction. Blood 2011; 117 (24) 6694-6701
  • 68 Kluft C, Los P, Jie AF. The molecular form of alpha 2-antiplasmin with affinity for plasminogen is selectively bound to fibrin by factor XIII. Thromb Res 1984; 33 (04) 419-425
  • 69 Dementiev A, Simonovic M, Volz K, Gettins PG. Canonical inhibitor-like interactions explain reactivity of alpha1-proteinase inhibitor Pittsburgh and antithrombin with proteinases. J Biol Chem 2003; 278 (39) 37881-37887
  • 70 Urano T, Suzuki Y. Thrombolytic therapy targeting alpha 2-antiplasmin. Circulation 2017; 135 (11) 1021-1023
  • 71 Lee KN, Tae WC, Jackson KW, Kwon SH, McKee PA. Characterization of wild-type and mutant alpha2-antiplasmins: fibrinolysis enhancement by reactive site mutant. Blood 1999; 94 (01) 164-171
  • 72 Sakata Y, Aoki N. Cross-linking of alpha 2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. J Clin Invest 1980; 65 (02) 290-297
  • 73 Aoki N, Moroi M, Tachiya K. Effects of alpha2-plasmin inhibitor on fibrin clot lysis. Its comparison with alpha2-macroglobulin. Thromb Haemost 1978; 39 (01) 22-31
  • 74 Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost 2005; 93 (04) 647-654
  • 75 Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29 (01) 17-24
  • 76 Sillen M, Declerck PJ. Targeting PAI-1 in cardiovascular disease: structural insights into PAI-1 functionality and inhibition. Front Cardiovasc Med 2020; 7: 622473
  • 77 Fattah MA, Shaheen MH, Mahfouz MH. Disturbances of haemostasis in diabetes mellitus. Dis Markers 2003-2004 19 (06) 251-258
  • 78 Uitte de Willige S, Malfliet JJCM, Abdul S, Leebeek FWG, Rijken DC. The level of circulating fibroblast activation protein correlates with incorporation of alpha-2-antiplasmin into the fibrin clot. Thromb Res 2018; 166: 19-21
  • 79 Dunn EJ, Ariëns RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia 2005; 48 (06) 1198-1206
  • 80 Jörneskog G, Egberg N, Fagrell B. et al. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 1996; 39 (12) 1519-1523
  • 81 Dunn EJ, Philippou H, Ariëns RA, Grant PJ. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia 2006; 49 (05) 1071-1080
  • 82 Nair CH, Azhar A, Wilson JD, Dhall DP. Studies on fibrin network structure in human plasma. Part II–Clinical application: diabetes and antidiabetic drugs. Thromb Res 1991; 64 (04) 477-485
  • 83 Bryk AH, Satała D, Natorska J, Rąpała-Kozik M, Undas A. Interaction of glycated and acetylated human α2-antiplasmin with fibrin clots. Blood Coagul Fibrinolysis 2020; 31 (06) 393-396
  • 84 Polat SB, Ugurlu N, Yulek F. et al. Evaluation of serum fibrinogen, plasminogen, α2-anti-plasmin, and plasminogen activator inhibitor levels (PAI) and their correlation with presence of retinopathy in patients with type 1 DM. J Diabetes Res 2014; 2014: 317292
  • 85 Agren A, Jörneskog G, Elgue G, Henriksson P, Wallen H, Wiman B. Increased incorporation of antiplasmin into the fibrin network in patients with type 1 diabetes. Diabetes Care 2014; 37 (07) 2007-2014
  • 86 Bryk AH, Siudut J, Broniatowska E. et al. Sex-specific alteration to α2-antiplasmin incorporation in patients with type 2 diabetes. Thromb Res 2020; 185: 55-62
  • 87 Carpenter SL, Mathew P. Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance. Haemophilia 2008; 14 (06) 1250-1254
  • 88 Kaushansky K. Thrombopoietin and its receptor in normal and neoplastic hematopoiesis. Thromb J 2016; 14 (Suppl. 01) 40
  • 89 Favier R, Aoki N, de Moerloose P. Congenital alpha(2)-plasmin inhibitor deficiencies: a review. Br J Haematol 2001; 114 (01) 4-10
  • 90 Aoki N, Saito H, Kamiya T, Koie K, Sakata Y, Kobakura M. Congenital deficiency of alpha 2-plasmin inhibitor associated with severe hemorrhagic tendency. J Clin Invest 1979; 63 (05) 877-884
  • 91 Aoki N. Discovery of alpha2-plasmin inhibitor and its congenital deficiency. J Thromb Haemost 2005; 3 (04) 623-631
  • 92 Harish VC, Zhang L, Huff JD, Lawson H, Owen J. Isolated antiplasmin deficiency presenting as a spontaneous bleeding disorder in a 63-year-old man. Blood Coagul Fibrinolysis 2006; 17 (08) 673-675
  • 93 Aoki N, Yamanaka T. The alpha2-plasmin inhibitor levels in liver diseases. Clin Chim Acta 1978; 84 (1-2): 99-105
  • 94 Colucci G, Alberio L, Jahns M. et al. Effective therapy with tranexamic acid in a case of chronic disseminated intravascular coagulation with acquired alpha2-antiplasmin deficiency associated with AL amyloidosis. Thromb Haemost 2009; 102 (06) 1285-1287
  • 95 Matsumoto H, Takeba J, Umakoshi K. et al. Successful treatment for disseminated intravascular coagulation (DIC) corresponding to phenotype changes in a heat stroke patient. J Intensive Care 2019; 7: 2
  • 96 Verstraete M, Collen D. Thrombolytic therapy in the eighties. Blood 1986; 67 (06) 1529-1541
  • 97 Lijnen HR, Okada K, Matsuo O, Collen D, Dewerchin M. Alpha2-antiplasmin gene deficiency in mice is associated with enhanced fibrinolytic potential without overt bleeding. Blood 1999; 93 (07) 2274-2281
  • 98 Wang X, Lin X, Loy JA, Tang J, Zhang XC. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 1998; 281 (5383): 1662-1665
  • 99 Collen D. Molecular mechanism of action of newer thrombolytic agents. J Am Coll Cardiol 1987; 10 (5, Suppl B): 11B-15B
  • 100 Berkowitz SD, Granger CB, Pieper KS. et al. Incidence and predictors of bleeding after contemporary thrombolytic therapy for myocardial infarction. The Global Utilization of Streptokinase and Tissue Plasminogen activator for Occluded coronary arteries (GUSTO) I Investigators. Circulation 1997; 95 (11) 2508-2516
  • 101 Abu Fanne R, Nassar T, Yarovoi S. et al. Blood-brain barrier permeability and tPA-mediated neurotoxicity. Neuropharmacology 2010; 58 (07) 972-980
  • 102 Gurewich V. Therapeutic fibrinolysis: how efficacy and safety can be improved. J Am Coll Cardiol 2016; 68 (19) 2099-2106
  • 103 Gurewich V. Thrombolysis: a critical first-line therapy with an unfulfilled potential. Am J Med 2016; 129 (06) 573-575
  • 104 Maggioni AP, Franzosi MG, Fresco C, Turazza F, Tognoni G. GISSI trials in acute myocardial infarction. Rationale, design, and results. Chest 1990; 97 (4, Suppl) 146S-150S
  • 105 ISIS-3: a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group. Lancet 1992; 339 (8796): 753-770
  • 106 GUSTO investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993; 329 (10) 673-682
  • 107 Andersen HR, Nielsen TT, Rasmussen K. et al; DANAMI-2 Investigators. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N Engl J Med 2003; 349 (08) 733-742
  • 108 Gravanis I, Tsirka SE. Tissue-type plasminogen activator as a therapeutic target in stroke. Expert Opin Ther Targets 2008; 12 (02) 159-170
  • 109 Hoover-Plow J. Does plasmin have anticoagulant activity?. Vasc Health Risk Manag 2010; 6: 199-205
  • 110 Collen D. alpha2-Antiplasmin inhibitor deficiency. Lancet 1979; 1 (8124): 1039-1040
  • 111 Sakata Y, Aoki N. [Molecular abnormalities of coagulation-fibrinolysis factors]. Nippon Ketsueki Gakkai Zasshi 1980; 43 (06) 1212-1218
  • 112 Kimura S, Tamaki T, Aoki N. Acceleration of fibrinolysis by the N-terminal peptide of alpha 2-plasmin inhibitor. Blood 1985; 66 (01) 157-160
  • 113 Lee KN, Jackson KW, McKee PA. Effect of a synthetic carboxy-terminal peptide of alpha(2)-antiplasmin on urokinase-induced fibrinolysis. Thromb Res 2002; 105 (03) 263-270
  • 114 Sheffield WP, Eltringham-Smith LJ, Gataiance S, Bhakta V. Addition of a sequence from alpha2-antiplasmin transforms human serum albumin into a blood clot component that speeds clot lysis. BMC Biotechnol 2009; 9: 15
  • 115 Lee KN, Lee SC, Jackson KW, Tae WC, Schwartzott DG, McKee PA. Effect of phenylglyoxal-modified alpha2-antiplasmin on urokinase-induced fibrinolysis. Thromb Haemost 1998; 80 (04) 637-644
  • 116 Nagai N, Demarsin E, Van Hoef B. et al. Recombinant human microplasmin: production and potential therapeutic properties. J Thromb Haemost 2003; 1 (02) 307-313
  • 117 de Smet MD, Valmaggia C, Zarranz-Ventura J, Willekens B. Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci 2009; 50 (02) 814-819
  • 118 Sacks D, Baxter B, Campbell BCV. et al; From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO). Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke 2018; 13 (06) 612-632
  • 119 Suzuki Y, Chen F, Ni Y, Marchal G, Collen D, Nagai N. Microplasmin reduces ischemic brain damage and improves neurological function in a rat stroke model monitored with MRI. Stroke 2004; 35 (10) 2402-2406
  • 120 Lapchak PA, Araujo DM, Pakola S, Song D, Wei J, Zivin JA. Microplasmin: a novel thrombolytic that improves behavioral outcome after embolic strokes in rabbits. Stroke 2002; 33 (09) 2279-2284
  • 121 Nagai N, De Mol M, Van Hoef B, Verstreken M, Collen D. Depletion of circulating alpha(2)-antiplasmin by intravenous plasmin or immunoneutralization reduces focal cerebral ischemic injury in the absence of arterial recanalization. Blood 2001; 97 (10) 3086-3092
  • 122 Pakola S, Cahillane G, Stassen JM, Lijnen HR, Verhamme P. Neutralization of alpha(2)-antiplasmin by microplasmin: a randomized, double-blind, placebo-controlled, ascending-dose study in healthy male volunteers. Clin Ther 2009; 31 (08) 1688-1706
  • 123 Thijs VN, Peeters A, Vosko M. et al. Randomized, placebo-controlled, dose-ranging clinical trial of intravenous microplasmin in patients with acute ischemic stroke. Stroke 2009; 40 (12) 3789-3795
  • 124 Lee KN, Jackson KW, Terzyan S, Christiansen VJ, McKee PA. Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor design. Biochemistry 2009; 48 (23) 5149-5158
  • 125 Singh S, Houng A, Reed GL. Releasing the brakes on the fibrinolytic system in pulmonary emboli: unique effects of plasminogen activation and α2-antiplasmin inactivation. Circulation 2017; 135 (11) 1011-1020
  • 126 Reed GL, Houng AK. The contribution of activated factor XIII to fibrinolytic resistance in experimental pulmonary embolism. Circulation 1999; 99 (02) 299-304
  • 127 Houng AK, Wang D, Reed GL. Reversing the deleterious effects of α2-antiplasmin on tissue plasminogen activator therapy improves outcomes in experimental ischemic stroke. Exp Neurol 2014; 255: 56-62
  • 128 Reed GL, Houng AK, Wang D. Microvascular thrombosis, fibrinolysis, ischemic injury, and death after cerebral thromboembolism are affected by levels of circulating α2-antiplasmin. Arterioscler Thromb Vasc Biol 2014; 34 (12) 2586-2593
  • 129 Su EJ, Lawrence DA. α2 Antiplasmin and microvascular thrombosis in ischemic stroke. Arterioscler Thromb Vasc Biol 2014; 34 (12) 2522-2523
  • 130 Butte AN, Houng AK, Jang IK, Reed GL. Alpha 2-antiplasmin causes thrombi to resist fibrinolysis induced by tissue plasminogen activator in experimental pulmonary embolism. Circulation 1997; 95 (07) 1886-1891
  • 131 Reed III GL, Matsueda GR, Haber E. Synergistic fibrinolysis: combined effects of plasminogen activators and an antibody that inhibits alpha 2-antiplasmin. Proc Natl Acad Sci U S A 1990; 87 (03) 1114-1118
  • 132 Singh S, Houng AK, Reed GL. Venous stasis-induced fibrinolysis prevents thrombosis in mice: role of α2-antiplasmin. Blood 2019; 134 (12) 970-978
  • 133 Reed III GL, Matsueda GR, Haber E. Inhibition of clot-bound alpha 2-antiplasmin enhances in vivo thrombolysis. Circulation 1990; 82 (01) 164-168
  • 134 Fiedler LR. Antibody based therapy in coronary artery disease and heart failure. Heart Res 2017; 4 (02) 39-45
  • 135 Reed III GL, Matsueda GR, Haber E. Acceleration of plasma clot lysis by an antibody to alpha 2-antiplasmin. Trans Assoc Am Physicians 1988; 101: 250-256
  • 136 Reed GL. Functional characterization of monoclonal antibody inhibitors of alpha 2-antiplasmin that accelerate fibrinolysis in different animal plasmas. Hybridoma 1997; 16 (03) 281-286
  • 137 Sakata Y, Eguchi Y, Mimuro J, Matsuda M, Sumi Y. Clot lysis induced by a monoclonal antibody against alpha 2-plasmin inhibitor. Blood 1989; 74 (08) 2692-2697
  • 138 Kumada T, Abiko Y. Physiological role of alpha 2-plasmin inhibitor in rats. Thromb Res 1984; 36 (02) 153-163
  • 139 Singh S, Saleem S, Reed GL. Alpha2-Antiplasmin: the devil you don't know in cerebrovascular and cardiovascular disease. Front Cardiovasc Med 2020; 7: 608899