Subscribe to RSS
DOI: 10.1055/a-1959-2742
An Alternative to the Arbuzov Reaction: Generation and Transformation of α-Dialkyl-Substituted Methylphosphonate Carbanions via an SET Reduction Process
This work was supported by the Scientific Research Fund of the Department of Education of Zhejiang Province (No. Y202147855), the Natural Science Project of Zhejiang Pharmaceutical University (No. ZPCSR2020001), the Natural Science Foundation of Ningbo (No. 2021J140), and the Science and Technology Innovation 2025 Major Project of Ningbo (No. 2019B10112).
Abstract
With B-alkyl Suzuki cross-coupling as the strategy, 1-alkyl-substituted ethenylphosphonates could be efficiently accessed via palladium-catalyzed reactions of α-phosphonovinyl tosylates with B-alkyl-9-borabicyclo[3.3.1]nonane (B-alkyl-9-BBN). Using the α-alkylethenylphosphonates as radical acceptors, visible-light-driven photocatalytic Giese-type and cyclopropanation reactions based on reductive radical-polar crossover have been successfully developed. The redox-neutral photocatalysis serves as a viable strategy for the preparation of various 1,1-dialkyl-substituted methylphosphonates and 1-alkylcyclopropylphosphonates.
Key words
Suzuki reaction - redox-neutral photocatalysis - single-electron transfer - SET reduction - 1,1-dialkylmethylphosphonates - 1-alkylcyclopropylphosphonatesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1959-2742.
- Supporting Information
Publication History
Received: 31 July 2022
Accepted after revision: 12 October 2022
Accepted Manuscript online:
12 October 2022
Article published online:
22 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Bhattacharya AK, Thyagarajan G. Chem. Rev. 1981; 81: 415
- 1b Kostoudi S, Pampalakis G. Int. J. Mol. Sci. 2022; 23: 3395
- 2a Lavén G, Stawinski J. Synlett 2009; 225
- 2b Kedrowski SM. A, Dougherty DA. Org. Lett. 2010; 12: 3990
- 2c Rajeshwaran GG, Nandakumar M, Sureshbabu R, Mohanakrishnan AK. Org. Lett. 2011; 13: 1270
- 2d Jasiak A, Mielniczak G, Owsianik K, Koprowski M, Krasowska D, Drabowicz J. J. Org. Chem. 2019; 84: 2619
- 2e Toupy T, Monbaliu J.-CM. Org. Process Res. Dev. 2022; 26: 467
- 3 Antczak MI, Montchamp J.-L. Org. Lett. 2008; 10: 977
- 4a Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
- 4b Zhang Z, Ye J.-H, Ju T, Liao L.-L, Huang H, Gui Y.-Y, Zhou W.-J, Yu D.-G. ACS Catal. 2020; 10: 10871
- 4c Sharma S, Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 3146
- 4d Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
- 5a Guo T, Zhang L, Liu X, Fang Y, Jin X, Yang Y, Li Y, Chen B, Ouyang M. Adv. Synth. Catal. 2018; 360: 4459
- 5b Luo W, Yang Y, Fang Y, Zhang X, Jin X, Zhao G, Zhang L, Li Y, Zhou W, Xia T, Chen B. Adv. Synth. Catal. 2019; 361: 4215
- 5c Luo W, Fang Y, Zhang L, Xu T, Liu Y, Li Y, Jin X, Bao J, Wu X, Zhang Z. Eur. J. Org. Chem. 2020; 1778
- 5d Liu Y, Luo W, Wu J, Fang Y, Li Y, Jin X, Zhang L, Zhang Z, Xu F, Du C. Org. Chem. Front. 2020; 7: 1588
- 5e Liu Y, Luo W, Xia T, Fang Y, Du C, Jin X, Li Y, Zhang L, Lei W, Wu H. Org. Chem. Front. 2021; 8: 1732
- 5f Yang N, Fang Y, Xu F, Zhou R, Jin X, Zhang L, Shi J, Fang J, Wu H, Zhang Z. Org. Chem. Front. 2021; 8: 5303
- 5g Lei W, Liu Y, Fang Y, Li Y, Du C, Fang J. Org. Biomol. Chem. 2021; 19: 8502
- 5h Jin X, Zhang L. Org. Biomol. Chem. 2022; 20: 5377
- 6 Lei W, Liu H, Li Y, Fang Y. Org. Chem. Front. 2022; 9: 3862
- 7a Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
- 7b Donabauer K, König B. Acc. Chem. Res. 2021; 54: 242
- 8 For a latest review, see: Kitcatt DM, Nicolle S, Lee A.-L. Chem. Soc. Rev. 2022; 51: 1415
- 9 Guo T, Zhang L, Fang Y, Jin X, Li Y, Li R, Li X, Cen W, Liu X, Tian Z. Adv. Synth. Catal. 2018; 360: 1352
- 10 For a review, see: Chemler SR, Trauner D, Danishefsky SJ. Angew. Chem. Int. Ed. 2001; 40: 4544
- 11 Zhang L, Fang Y, Jin X, Guo T, Li R, Li Y, Li X, Ye Q, Luo X, Tian Z. Org. Chem. Front. 2018; 5: 1457
- 12a Fang Y, Zhang L, Li J, Jin X, Yuan M, Li R, Wu R, Fang J. Org. Lett. 2015; 17: 798
- 12b Fang Y, Zhang L, Jin X, Li J, Yuan M, Li R, Wang T, Wang T, Hu H, Gu J. Eur. J. Org. Chem. 2016; 1577
- 12c Yuan M, Fang Y, Zhang L, Jin X, Tao M, Ye Q, Li R, Li J, Zheng H, Gu J. Chin. J. Chem. 2015; 33: 1119
- 13 Zhang L. Synlett 2021; 32: 723
- 14a Chuit C, Corriu RJ. P, Reye C, Young JC. Chem. Rev. 1993; 93: 1371
- 14b Goddard J.-P, Ollivier C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
- 14c Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
- 14d Corcé V, Ollivier C, Fensterbank L. Chem. Soc. Rev. 2022; 51: 1470
- 15a Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. ACS Catal. 2021; 11: 1640
- 15b Murarka S. Adv. Synth. Catal. 2018; 360: 1735
- 16 Cerveau G, Chuit C, Corriu RJ. P, Gerbier L, Reye C, Aubagnac JL, El Amrani B. Int. J. Mass Spectrom. Ion Processes 1988; 82: 259
- 17 Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
- 18 For a review, see: Shi B, Fang Y, Zhang L, Jin X, Wu Y, Fang M, Yang Y, Chen C. Chin. J. Org. Chem. 2016; 36: 673
- 19a Fang Y, Zhang L, Jin X, Li J, Yuan M, Li R, Gao H, Fang J, Liu Y. Synlett 2015; 26: 980
- 19b Zhang L, Fang Y, Jin X, Xu H, Li R, Wu H, Chen B, Zhu Y, Yang Y, Tian Z. Org. Biomol. Chem. 2017; 15: 8985
- 20a Fang Y, Yuan M, Jin X, Zhang L, Li R, Yang S, Fang M. Tetrahedron Lett. 2016; 57: 1368
- 20b Zhang L, Fang Y, Jin X, Guo T, Li R, Li Y, Li X, Yang Y, Yuan M, Tian Z. Tetrahedron Lett. 2017; 58: 4538
- 21 Xie X, Zhang X, Yang H, Ji X, Li J, Ding S. J. Org. Chem. 2019; 84: 1085
- 22 Xie S, Li D, Huang H, Zhang F, Chen Y. J. Am. Chem. Soc. 2019; 141: 16237
- 23a Zheng C, Wang Y, Xu Y, Chen Z, Chen G, Liang SH. Org. Lett. 2018; 20: 4824
- 23b Dai P.-F, Wang Y.-P, Qu J.-P, Kang Y.-B. Org. Lett. 2021; 23: 9360
- 24 Wang D.-Y, Hu X.-P, Deng J, Yu S.-B, Duan Z.-C, Zheng Z. J. Org. Chem. 2009; 74: 4408
For reviews, see:
For selected examples, see:
For reviews, see:
For reviews, see:
For selected reviews, see: