Z Gastroenterol 2023; 61(11): 1465-1471
DOI: 10.1055/a-1959-3200
Originalarbeit

Endoscopic laser endomicroscopy and “leaky gut” in patients with functional gastrointestinal symptoms and food intolerance

Endoskopische Laserendomikroskopie und „leaky gut“ bei Patienten mit funktionellen gastrointestinalen Beschwerden und Nahrungsunverträglichkeiten
Thomas Frieling
1   Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
,
Besmir Gjini
1   Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
,
Ilka Melchior
1   Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
,
Philipp Euler
1   Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
,
Christian Kreysel
1   Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
,
Sigrid Kalde
1   Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
,
Britta Krummen
1   Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
,
Ralf Kiesslich
2   Helios Dr. Horst Schmidt Kliniken Wiesbaden GmbH, Wiesbaden, Germany
,
Bernhard Hemmerlein
3   Institut für Pathologie, HELIOS Klinikum Krefeld, Krefeld, Germany (Ringgold ID: RIN27664)
› Author Affiliations

Abstract

Background Intestinal epithelial barrier dysfunction (“leaky gut syndrome”, LGS) is thought to play a major role in the pathogenesis of disorders of the gut brain axis. Endoscopic confocal laser endomicroscopy (eCLE) is an objective measure to test duodenal permeability. We applied this technique in patients with functional gastrointestinal symptoms and food intolerance to characterize the proportion of patients with LGS.

Material and Methods In an observational study, we evaluated 85 patients with functional gastrointestinal symptoms and food intolerance. Gastrointestinal symptoms were classified according to Rom IV into functional abdominal pain (FAP), irritable bowel syndrome (IBS), irritable bowel syndrome diarrhea dominant (IBS-D), irritable bowel syndrome constipation dominant (IBS-C), irritable bowel syndrome with mixed stool (IBS-M), functional abdominal bloating (FAB), functional diarrhea (FD) and unclassified (NC). During eCLE, spontaneous transfer of intravenously applied fluorescein into duodenal lumen (LGS) and following duodenal food challenge (DFC) were analyzed. Blood analysis comprised parameters of mast cell function, histology of duodenal mucosal biopsies analysis of mucosal inflammation, intraepithelial lymphocytes (IELs) as well as number, distribution and morphology of mast cells.

Results 24 patients (9 IBS, 9 FAP, 3 FAB, 1 FD, 2 NC), showed LGS, 50 patients (14 IBS-D, 4 IBS-C, 3 IBS-M, 23 FAP, 3 FAB, 3 NC) had no LGS but responded to DFC and 11 patients (6 NC, 3 FAP, 1 FAB, 1 FD) had no LGS and no response to DFC. The proportion of subgroups with/or without spontaneous leakage of fluorescein (+LGS/-LGS) were IBS-LGS/IBS+LGS 67%/33%, FAP-LGS/FAP+LGS 72%/28%,FAB-LGS/FAB+LGS 50%/50%, NC-LGS/NC+LGS 60%/40%. Subgroup analysis revealed no significant differences for all parameters tested.

Conclusion As a proof of concept, the results of our study indicate that eCLE is a clinical useful tool to evaluate patients with disorders of the gut brain axis and those suspicious of LGS. However, the clinical significance of LGS remains unclear. The study should be an incentive to perform a randomized study including healthy controls.

Zusammenfassung

Hintergrund Eine Dysfunktion der intestinalen Barriere („Leaky-gut-Syndrom“, LGS) spielt wahrscheinlich eine bedeutende Rolle in der Pathogenese von Störungen der Darm-Hirn-Achse. Die endoskopische konfokale Laserendomikroskopie (eCLE) ist eine Technik zur objektiven Messung der duodenalen Permeabilität. Wir haben diese Technik zur Untersuchung von Patienten mit funktionellen gastrointestinalen Beschwerden und Nahrungsunverträglichkeiten zur Charakterisierung eines LGS eingesetzt.

Methode In einer prospektiven Beobachtungsstudie wurden 85 Patienten mit funktionellen gastrointestinalen Beschwerden und Nahrungsunverträglichkeiten mit der eCLE untersucht. Die gastrointestinalen Beschwerden wurden anhand des Rom-IV-Konsensus in funktionelle Bauchschmerzen (FAP), Reizdarmsyndrom (IBS), Reizdarmsyndrom Diarrhoe-dominant (IBS-D), Reizdarmsyndrom Obstipations-dominant (IBS-C), Reizdarmsyndrom mit unterschiedlichem Stuhlverhalten (IBS-M), funktionelle Blähungen (FAB), funktionelle Diarrhose (FD) und unklassifizierbare Beschwerden (NC) differenziert. Während der eCLE wurden der spontane Übergang von intravenös appliziertem Fluoescein in das Duodenallumen (LGS) bzw. nach duodenaler Nahrungsallergenprovokation (DFC) untersucht. Die Blutuntersuchungen beinhalteten u. a. Parameter der Mastzellfunktionen, die Histologie der Duodenalbiopsien, die Analyse von Entzündungen, intraepithelialen Lymphozyten (IELs) und die Anzahl, Verteilung und Morphologie der Mastzellen.

Ergebnisse 24 Patienten zeigten LGS (9 IBS, 9 FAP, 3 FAB, 1 FD, 2 NC), 50 Patienten (14 IBS-D, 4 IBS-C, 3 IBS-M, 23 FAP, 3 FAB, 3 NC) hatten kein LGS, reagierten aber auf die DFC und 11 Patienten (6 NC, 3 FAP, 1 FAB, 1 FD) hatten kein LGS und zeigten keine Reaktion auf DFC. Die Proportion der Subgruppen mit/oder ohne spontanen Übertritt von Fluorescein in das Duodenallumen (+LGS/-LGS) waren IBS-LGS/IBS+LGS 67%/33, FAP-LGS/FAP+LGS 72%/28%, FAB-LGS/FAB+LGS 50%/50%, NC-LGS/NC+LGS 60%/40%. Die Subgruppenanalyse ergab für alle getesteten Parameter keinen signifikanten Unterschied.

Schlussfolgerung Die Ergebnisse unserer “proof of concept”-Studie zeigen, dass die eCLE eine klinisch nützliche Untersuchungstechnik bei Patienten mit Störungen der Darm-Hirn-Achse und V. a. LGS ist. Die klinische Relevanz von LGS ist allerdings noch unklar. Die Ergebnisse sollten eine randomisierte Studie mit gesunden Kontrollen initiieren.



Publication History

Received: 26 June 2022

Accepted after revision: 06 October 2022

Article published online:
23 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fukui H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation?. Inflamm Intest Dis 2016; 1: 135-145
  • 2 Yoshimoto T, Oshima T, Huang X. et al. Microinflammation in the intestinal mucosa and symptoms of irritable bowel syndrome. J Gastroenterol 2022; 57: 62-69
  • 3 Vanuytsel T, van Wanrooy S, Vanheel H. et al. Psychological stress and corticotropin-releasuing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014; 63: 1293-1299
  • 4 Wauters L, Talley NJ, Walker MM. et al. Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut 2020; 69: 591-600
  • 5 Vanheel H, Vicario M, Vanuytsel T. et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 2014; 63: 262-271
  • 6 Talley NJ, Walker MM, Aro P. et al. Non-ulcer dyspepsia and duodenal eosinophilia: An adult endoscopic population-based case-control study. Clin Gastroenterol Hepatol 2007; 5: 1175-1183
  • 7 Vanheel H, Vicario M, Boesmans W. et al. Activation of eosinophils and mast cells in functional dyspepsia: An ultrastructural evaluation. Sci Rep 2018; 8: 5383
  • 8 Cirillo C, Bessissow T, Desmet AS. et al. Evidence for neuronal and structural changes in submucous ganglia of patients with functional dyspepsia. Am J Gastroenterol 2015; 110: 1205-1215
  • 9 Kindt S, Tertychnyy A, de Hertogh G. et al. Intestinal immune activation in presumed post-infectious functional dyspepsia. Neurogastroenterol Motil 2009; 21: 832.e56
  • 10 Taki M, Oshima T, Li M. et al. Duodenal low-grade inflammation and expression of tight junction proteins in functional dyspepsia. Neurogastroenterol Motil 2019; 31: e13576
  • 11 Miglietta S, Borghini R, Relucenti M. et al. New insights into intestinal permeability in irritable Bowel syndrome-like disorders: histological and ultrastructural findings of duodenal biopsies. Cells 2021; 10: 2593
  • 12 Obrenovich MEM. Leaky gut, leaky brain?. Microorganisms 2018; 6: 107
  • 13 Tack J, Schol J, van den Houte K. et al. Pradigm shift. Functional dyspepsia-a “leaky gut” disorder?. Am J Gastroenterol 2020; 116: 274-275
  • 14 Nojkov B, Zhou SY, Dolan RD. et al. Evidence of duodenal epithelial barrier impairment and increased pyroptosis in patients with functional dyspepsia on confocal laser endomicroscopy and “ex vivo” mucosa analysis. Am J Gastroenterol 2020; 115: 1891-1901
  • 15 Wauters L, Ceulemans M, Schol J. et al. The Role of Leaky Gut in Functional Dyspepsia. . Front. Neurosci 2022;
  • 16 Beeckmans D, Farré R, Riethorst D. et al. Relationship between bile salts, bacterial translocation, and duodenal mucosal integrity in functional dyspepsia. Neurogastroenterol Motil 2020; 32: e13788
  • 17 Vanheel H, Carbone F, Valvekens L. et al. Pathophysiological abnormalities in functional dyspepsia subgroups according to the rome III criteria. Am J Gastroenterol 2017; 112: 132-140
  • 18 Binienda A, Twardowska A, Makaro A. et al. Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview.. Int J Mol Sci 2020; 21: 8368
  • 19 Fritscher-Ravens A, Schuppan D, Ellrichmann M. et al. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 2014; 147: 1012-1020
  • 20 Fritscher-Ravens A, Pflaum T, Mösinger M. et al. Many patients with irritable bowel syndrome have atypical food allergies not associated with immunoglobulin E. Gastroenterology 2019; 157: 109-118
  • 21 Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016;
  • 22 Wyatt J, Oberhuber G, Pongratz S. et al. Increased gastric and intestinal permeability in patients with Crohn’s disease. Am J Gastroenterol 1997; 92: 1891-1896
  • 23 Oriishi T, Sata M, Toyonaga A. et al. Evaluation of intestinal permeability in patients with inflammatory bowel disease using lactulose and measuring antibodies to lipid A. Gut 1995; 36: 891-896
  • 24 Vivinus-Nebot M, Frin-Mathy G, Bzioueche H. et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut 2014; 63: 744-752
  • 25 Buning C, Geissler N, Prager M. et al. Increased small intestinal permeability in ulcerative colitis: rather genetic than environmental and a risk factor for extensive disease?. Inflamm Bowel Dis 2012; 18: 1932-1939
  • 26 Gerova VA, Stoynov SG, Katsarov DS. et al. Increased intestinal permeability in inflammatory bowel diseases assessed by iohexol test. World J Gastroenterol 2011; 17: 2211-2215
  • 27 Camilleri M, Lasch K, Zhou W. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012; 303: G775-G785
  • 28 Piche T, Barbara G, Aubert P. et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 2009; 58: 196-20
  • 29 Bertiaux-Vandaele N, Youmba SB, Belmonte L. et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 2011; 106: 2165-2173
  • 30 Waugh E, Waugh N, Cummins E. et al. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: systematic review and economic evaluationHealth Technology Assessment. 2013; 17