Klin Monbl Augenheilkd 2023; 240(02): 125-129
DOI: 10.1055/a-1965-0044
Übersicht

Glaucoma as a Neurodegenerative and Inflammatory Disease

Das Glaukom ist eine neurodegenerative und neuroinflammatorische Erkrankung
Verena Prokosch
Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
,
Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
,
Xin Shi
Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
› Author Affiliations

Abstract

Glaucoma is a neurodegenerative disease that leads to irreversible loss of vision through degeneration of the retinal ganglia cells (RGCs). Glaucoma is one of the most frequent causes of blindness in the world. Intraocular pressure is the main risk factor for the occurrence and development of this disease. Treatment is largely based on reducing internal optical pressure. However, some patients may deteriorate or become blind, despite normal or reduced internal optical pressure. The pathophysiological details are still unclear. Neuroinflammatory processes are also apparently an additional cause. In principle, innate or local responses of the adaptive immune system can be distinguished. The reaction of the innate immune system, particularly the local microglial cells, has long been studied. The macroglia with the astrocytes and Müller cells and their homeostatic effects have also long been known. On the other hand, it has long been thought that the retina with its RGZs was inert to adaptive immunological reactions – due to the function of the blood brain barrier. However, this system may be disturbed by antigen presentation, leading to a reaction of the adaptive immune system, with B cell and T cell responses. In this context, the key proteins are presumably heat shock proteins. We now know that neuroinflammation is important in glaucoma, as in other neurodegenerative diseases. It is important to increase our understanding of these phenomena. In this review article, we present our current knowledge of the role of the micro- and macroglia, the adaptive immune system, and the heat shock proteins.

Zusammenfassung

Das Glaukom ist eine neurodegenerative Erkrankung, die zu irreversiblem Sehverlust durch Degeneration der retinalen Ganglienzellen (RGZ) führt. Glaukom ist weltweit eine der häufigsten Ursachen für Erblindung. Der Augeninnendruck ist der Hauptrisikofaktor für das Entstehen und Fortschreiten der Erkrankung. Die Senkung des Augeninnendrucks ist die Hauptstütze der Behandlung. Trotz normalem oder gesenktem Augeninnendruck zeigen einige Patienten jedoch eine Verschlechterung bis hin zur Erblindung. Die genaue Pathophysiologie ist dabei nach wie vor unklar. Eine der weiteren Ursachen scheinen neuroinflammatorische Prozesse zu sein. Prinzipiell kann man dabei zwischen Antworten des innaten oder lokalen sowie des adaptiven Immunsystems unterscheiden. Die Reaktion des innaten Immunsystems, vor allem der lokalen Mikrogliazellen, ist dabei schon länger untersucht worden. Aber auch die Makroglia mit den Astrozyten und Müller-Zellen und ihrer homöostatischen Wirkung sind bereits länger bekannt. Bezüglich des adaptiven Immunsystems galt die Netzhaut mit ihren RGZs hingegen aufgrund der funktionierenden Blut-Hirn-Schranke lange Zeit inert gegenüber adaptiven immunologischen Reaktionen. Kommt es jedoch zu Störungen desselben mit Antigenpräsentation, kann es auch zu einer Reaktion des adaptiven Immunsystems mit Antwort der B- und T-Zellen kommen. Schlüsselproteine in diesem Kontext sind vermutlich die Hitzeschockproteine. Heute weiß man, dass die Neuroinflammation beim Glaukom wie auch bei anderen neurodegenerativen Erkrankungen eine wichtige Rolle spielt. Das weitere Verständnis derselben ist von großer Bedeutung. In dieser Übersichtsarbeit wollen wir die Rolle der Mikro- und Makroglia, des adaptiven Immunsystems und der Hitzeschockproteine und das Wissen dazu präsentieren.



Publication History

Received: 17 August 2022

Accepted: 18 October 2022

Accepted Manuscript online:
20 October 2022

Article published online:
22 February 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262-267
  • 2 Liu H, Anders F, Thanos S. et al. Hydrogen Sulfide Protects Retinal Ganglion Cells Against Glaucomatous Injury In Vitro and In Vivo . Invest Ophthalmol Vis Sci 2017; 58: 5129-5141
  • 3 Dietze J, Blair K, Havens SJ. Glaucoma. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Accessed November 09, 2022 at: https://www.ncbi.nlm.nih.gov/books/NBK538217/
  • 4 Kwon YH, Fingert JH, Kuehn MH. et al. Primary open-angle glaucoma. N Engl J Med 2009; 360: 1113-1124
  • 5 Weinreb RN, Leung CK, Crowston JG. et al. Primary open-angle glaucoma. Nat Rev Dis Primers 2016; 2: 16067
  • 6 Kapetanakis VV, Chan MP, Foster PJ. et al. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. Br J Ophthalmol 2016; 100: 86-93
  • 7 Cockburn DM. Does reduction of intraocular pressure (IOP) prevent visual field loss in glaucoma?. Am J Optom Physiol Opt 1983; 60: 705-711
  • 8 Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med 2014; 4: a017269
  • 9 Tezel G. Immune regulation toward immunomodulation for neuroprotection in glaucoma. Curr Opin Pharmacol 2013; 13: 23-31
  • 10 Wax MB, Tezel G, Yang J. et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 2008; 28: 12085-12096
  • 11 Howell GR, Soto I, Zhu X. et al. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 2012; 122: 1246-1261
  • 12 Nickells RW, Howell GR, Soto I. et al. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 2012; 35: 153-179
  • 13 Adornetto A, Russo R, Parisi V. Neuroinflammation as a target for glaucoma therapy. Neural Regen Res 2019; 14: 391-394
  • 14 Reichenbach A, Bringmann A. Glia of the human retina. Glia 2020; 68: 768-796
  • 15 Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol 2014; 32: 367-402
  • 16 Streit WJ, Conde JR, Fendrick SE. et al. Role of microglia in the central nervous systemʼs immune response. Neurol Res 2005; 27: 685-691
  • 17 Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 2011; 519: 599-620
  • 18 Lee JE, Liang KJ, Fariss RN. et al. Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci 2008; 49: 4169-4176
  • 19 Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2009; 85: 352-370
  • 20 Bosco A, Inman DM, Steele MR. et al. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008; 49: 1437-1446
  • 21 Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z. et al. Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthal 2006; 124: 520-526
  • 22 Liu B, Wang K, Gao HM. et al. Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 2001; 77: 182-189
  • 23 Guadagno J, Xu X, Karajgikar M. et al. Microglia-derived TNFalpha induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death Dis 2013; 4: e538
  • 24 Guadagno J, Swan P, Shaikh R. et al. Microglia-derived IL-1beta triggers p 53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis 2015; 6: e1779
  • 25 Ebneter A, Casson RJ, Wood JP. et al. Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 2010; 51: 6448-6460
  • 26 Howell GR, Macalinao DG, Sousa GL. et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 2011; 121: 1429-1444
  • 27 Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387-1394
  • 28 Langmann T. Microglia activation in retinal degeneration. J Leukoc Biol 2007; 81: 1345-1351
  • 29 Tezel G, Li LY, Patil RV. et al. TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2001; 42: 1787-1794
  • 30 Yuan L, Neufeld AH. Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000; 32: 42-50
  • 31 Roh JH, Huang Y, Bero AW. et al. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimerʼs disease pathology. Sci Transl Med 2012; 4: 150ra122
  • 32 Mac Nair CE, Nickells RW. Neuroinflammation in Glaucoma and Optic Nerve Damage. Prog Mol Biol Transl Sci 2015; 134: 343-363
  • 33 Arroba AI, Campos-Caro A, Aguilar-Diosdado M. et al. IGF-1, Inflammation and Retinal Degeneration: A Close Network. Front Aging Neurosci 2018; 10: 203
  • 34 Stein-Streilein J. Immune regulation and the eye. Trends Immunol 2008; 29: 548-554
  • 35 Streilein JW, Wilbanks GA, Cousins SW. Immunoregulatory mechanisms of the eye. J Neuroimmunol 1992; 39: 185-200
  • 36 Griffith TS, Brunner T, Fletcher SM. et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995; 270: 1189-1192
  • 37 Wilbanks GA, Streilein JW. Characterization of suppressor cells in anterior chamber-associated immune deviation (ACAID) induced by soluble antigen. Evidence of two functionally and phenotypically distinct T-suppressor cell populations. Immunology 1990; 71: 383-389
  • 38 Moalem G, Leibowitz-Amit R, Yoles E. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5: 49-55
  • 39 Chen H, Cho KS, Vu THK. et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 2018; 9: 3209
  • 40 Tezel G, Hernandez R, Wax MB. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol 2000; 118: 511-518
  • 41 Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44: 1982-1992
  • 42 Qing G, Duan X, Jiang Y. Heat shock protein 72 protects retinal ganglion cells in rat model of acute glaucoma. Yan Ke Xue Bao 2005; 21: 163-168
  • 43 Sakai M, Sakai H, Nakamura Y. et al. Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Jpn J Ophthalmol 2003; 47: 42-52
  • 44 Park KH, Cozier F, Ong OC. et al. Induction of heat shock protein 72 protects retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 2001; 42: 1522-1530
  • 45 Liu H, Bell K, Herrmann A. et al. Crystallins Play a Crucial Role in Glaucoma and Promote Neuronal Cell Survival in an In Vitro Model Through Modulating Müller Cell Secretion. Invest Ophthalmol Vis Sci 2022; 63: 3
  • 46 Fink AL. Chaperone-mediated protein folding. Physiol Rev 1999; 79: 425-449
  • 47 van Eden W, Jansen MAA, Ludwig I. et al. The Enigma of Heat Shock Proteins in Immune Tolerance. Front Immunol 2017; 8: 1599
  • 48 Jin C, Cleveland JC, Ao L. et al. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med 2014; 20: 280-289
  • 49 Rosenberger K, Dembny P, Derkow K. et al. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol Neurodegener 2015; 10: 5
  • 50 Swaroop S, Sengupta N, Suryawanshi AR. et al. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 2016; 13: 27
  • 51 Joachim SC, Grus FH, Kraft D. et al. Complex antibody profile changes in an experimental autoimmune glaucoma animal model. Invest Ophthalmol Vis Sci 2009; 50: 4734-4742
  • 52 Gramlich OW, Beck S, von Thun Und Hohenstein-Blaul N. et al. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 2013; 8: e57557
  • 53 Yang X, Zeng Q, Göktas E. et al. T-Lymphocyte Subset Distribution and Activity in Patients With Glaucoma. Invest Ophthalmol Vis Sci 2019; 60: 877-888
  • 54 Mariotti S, Barbesino G, Caturegli P. et al. Serum soluble interleukin 2 (IL-2) receptor (sIL-2R) in differentiated thyroid carcinoma. J Endocrinol Invest 1994; 17: 861-867
  • 55 Yang J, Patil RV, Yu H. et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol 2001; 131: 421-426
  • 56 Perez VL, Caspi RR. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol 2015; 36: 354-363