Rofo 2023; 195(01): 38-46
DOI: 10.1055/a-1967-1443
Breast

Künstliche Intelligenz zur Indikationsstellung einer invasiven Mikrokalkabklärung im Mammografie-Screening

Article in several languages: English | deutsch
1   Clinic for Radiology and Reference Center for Mammography, University Hospital and University of Münster, Münster, Germany
,
Anne-Kathrin Brehl
2   ScreenPoint Medical, Nijmegen, The Netherlands
,
1   Clinic for Radiology and Reference Center for Mammography, University Hospital and University of Münster, Münster, Germany
,
3   Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
› Author Affiliations
EU INTERREG V A Programm Deutschland-Niederlande; Projekt InMediValue 122 207

Zusammenfassung

Ziel Läsionsbezogene Überprüfung der diagnostischen Wertigkeit eines individuellen Algorithmus künstlicher Intelligenz (KI) in der Dignitätsbewertung von mammografisch detektierten und histologisch abgeklärten Mikroverkalkungen.

Material und Methoden Die retrospektive Studie umfasste 634 Frauen mit abgeschlossener invasiver Abklärungsdiagnostik aufgrund von Mikroverkalkungen einer Mammografie-Screening-Einheit (Juli 2012 – Juni 2018). Das KI-System berechnete für jede Läsion einen Score zwischen 0 und 98. Scores > 0 wurden als KI-positiv betrachtet. Die KI-Performance wurde läsionen-spezifisch auf Basis des positiven prädiktiven Werts der umgesetzten invasiven Abklärungsdiagnostik (PPV3), der Rate falsch negativer und richtig negativer KI-Bewertungen evaluiert.

Ergebnisse Der PPV3 stieg über die Befundstufen an (Befunder: 4a: 21,2 %, 4b: 57,7 %, 5: 100 %, gesamt 30,3 %; KI: 4a: 20,8 %, 4b: 57,8 %, 5: 100 %, gesamt: 30,7 %). Die Rate falsch negativer KI-Bewertungen lag bei 7,2 % (95 %-CI: 4,3 %, 11,4 %), die Rate richtig negativer KI-Bewertungen bei 9,1 % (95 %-CI: 6,6 %, 11,9 %). Diese Raten waren mit 12,5 % bzw. 10,4 % in der Befundstufe 4a am größten. Im Median war der KI-Score für benigne Läsionen am geringsten (61, Interquartilsabstand [IQR]: 45–74) und für invasive Mammakarzinome am höchsten (81, IQR: 64–86). Mediane Scores für das duktale Carcinoma in situ waren: 74 beim geringen (IQR: 63–84), 70 (IQR: 52–79) beim intermediären und 74 (IQR: 66–83) beim hohen Kernmalignitätsgrad.

Schlussfolgerung Bei niedrigster Schwelle führt die Mikrokalk-bezogene KI-Bewertung zu einem zur menschlichen Bewertung vergleichbaren Anstieg des PPV3 über die Befundstufen. Der größte KI-bezogene Verlust an Brustkrebsdetektionen liegt bei geringstgradig suspekten Mikroverkalkungen vor mit einer vergleichbaren Einsparung falsch positiver invasiver Abklärungen. Eine Score-bezogene Stratifizierung maligner Läsionen lässt sich nicht ableiten.

Kernaussagen:

  • Der PPV3 der Mikrokalkabklärung ist unter KI-Bewertung vergleichbar zur menschlichen Bewertung.

  • Die Befundstufe 4a unterliegt der ausgeprägtesten KI-induzierten Minderung Screening-positiver sowie Screening-negativer Läsionen.

  • Die Score-Werte diskriminieren keine Subgruppen histologischer Läsionen.

Zitierweise

  • Weigel S, Brehl AK, Heindel W et al. Artificial Intelligence for Indication of Invasive Assessment of Calcifications in Mammography Screening. Fortschr Röntgenstr 2023; 195: 38 – 46



Publication History

Received: 08 July 2022

Accepted: 16 October 2022

Article published online:
01 January 2023

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Perry N, Broeders M, de Wolf C. et al. (eds). European guidelines for quality assurance in breast cancer screening and diagnosis. Luxembourg: Office for Official Publications of the European Communities; 2006
  • 2 Khil L, Heidrich J, Wellmann I. et al. Incidence of advanced-stage breast cancer in regular participants of a mammography screening program: a prospective register-based study. BMC Cancer 2020; 20: 1-9
  • 3 Katalinic A, Eisemann N, Kraywinkel K. et al. Breast cancer incidence and mortality before and after implementation of the German mammography screening program. Int J Cancer 2020; 147: 709-718
  • 4 Bennani-Baiti B, Baltzer PAT. Künstliche Intelligenz in der Mammadiagnostik. Radiologe 2020; 60: 56-63
  • 5 Hickman SE, Woitek R, Le EPV. et al. Machine Learning for Workflow Applications in Screening Mammography: Systematic Review and Meta-Analysis. Radiology 2022; 302: 88-104
  • 6 Weigel S, Decker T, Korsching E. et al. Calcifications in digital mammographic screening: improvement of early detection of invasive breast cancers?. Radiology 2010; 255: 738-745
  • 7 Tse GM, Tan PH, Pang AL. et al. Calcification in breast lesions: pathologists’ perspective. J Clin Pathol 2008; 61: 145-151
  • 8 D’Orsi CJ, Mendelson EB, Ikeda DM. et al. (eds). Breast Imaging Reporting and Data System: ACR BI-RADS – breast imaging atlas. Reston: American College of Radiology; 2003
  • 9 Jahresbericht Evaluation 2019. Deutsches Mammographie-Screening-Programm. Kooperationsgemeinschaft Mammographie, Berlin, November 2021. Im Internet: https://www.mammo-programm.de/download/downloads/berichte/neu_KOOPMAMMO_Jahresbericht_Eval_2019_20211112_web-Einzelseite_2.pdf
  • 10 Rodriguez-Ruiz A, Lång K, Gubern-Merida A. et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. J Natl Cancer Inst 2019; 111: 916-922
  • 11 Kerschke L, Weigel S, Rodriguez-Ruiz A. et al. Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance. Eur Radiol 2022; 32: 842-852
  • 12 Rodríguez-Ruiz A, Krupinski E, Mordang JJ. et al. Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System. Radiology 2019; 290: 305-314
  • 13 Weigel S, Decker T, Korsching E. et al. Minimalinvasive biopsy results of “uncertain malignant potential” in digital mammography screening: high prevalence but also high predictive value for malignancy. Fortschr Röntgenstr 2011; 183: 743-748
  • 14 Burnside ES, Ochsner JE, Fowler KJ. et al. Use of calcification descriptors in BI-RADS 4th edition to stratify risk of malignancy. Radiology 2007; 242: 388-395
  • 15 Do YA, Jang M, Yun B. et al. Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Diagnosis for Breast Microcalcification on Mammography. Diagnostics 2021; 11: 1409
  • 16 Schönenberger C, Hejduk P, Ciritsis A. et al. Classification of Mammographic Breast Microcalcifications Using a Deep Convolutional Neural Network: A BI-RADS-Based Approach. Invest Radiol 2021; 56: 224-231
  • 17 Tot T, Gere M, Hofmeyer S. et al. The clinical value of detecting calcifications on a mammogram. Semin Cancer Biol 2021; 72: 165-174
  • 18 Maxwell AJ, Hilton B, Clements K. et al. Unresected screen-detected ductal carcinoma in situ: Outcomes of 311 women in the Forget-Me-Not 2 study. Breast 2022; 61: 145-155
  • 19 Wallis MG. Artificial intelligence for the real world of breast screening. Eur J Radiol 2021; 144: 109661
  • 20 Lang K, Hofvind S, Rodriguez-Ruiz A. et al. Can artificial intelligence reduce the interval cancer rate?. Eur Radiol 2021; 31: 5940-5947
  • 21 Wanders AJT, Mees W, Bun PAM. et al. Interval cancer detection using a neural network and breast density in women with negative screening mammograms. Radiology 2022; 303: 269-75