Rofo 2023; 195(01): 38-46
DOI: 10.1055/a-1967-1443
Breast

Artificial Intelligence for Indication of Invasive Assessment of Calcifications in Mammography Screening

Article in several languages: English | deutsch
1   Clinic for Radiology and Reference Center for Mammography, University Hospital and University of Münster, Münster, Germany
,
Anne-Kathrin Brehl
2   ScreenPoint Medical, Nijmegen, The Netherlands
,
1   Clinic for Radiology and Reference Center for Mammography, University Hospital and University of Münster, Münster, Germany
,
3   Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
› Author Affiliations
EU INTERREG V A programme Germany-Netherlands; project InMediValue 122 207
Zoom Image

Abstract

Purpose Lesion-related evaluation of the diagnostic performance of an individual artificial intelligence (AI) system to assess mamographically detected and histologically proven calcifications.

Materials and Methods This retrospective study included 634 women of one screening unit (July 2012 – June 2018) who completed the invasive assessment of calcifications. For each leasion, the AI-system calculated a score between 0 and 98. Lesions scored > 0 were classified as AI-positive. The performance of the system was evaluated based on its positive predictive value of invasive assessment (PPV3), the false-negative rate and the true-negative rate.

Results The PPV3 increased across the categories (readers: 4a: 21.2 %, 4b: 57.7 %, 5: 100 %, overall 30.3 %; AI: 4a: 20.8 %, 4b: 57.8 %, 5: 100 %, overall: 30.7 %). The AI system yielded a false-negative rate of 7.2 % (95 %-CI: 4.3 %: 11.4 %) and a true-negative rate of 9.1 % (95 %-CI: 6.6 %; 11.9 %). These rates were highest in category 4a, 12.5 % and 10.4 % retrospectively. The lowest median AI score was observed for benign lesions (61, interquartile range (IQR): 45–74). Invasive cancers yielded the highest median AI score (81, IQR: 64–86). Median AI scores for ductal carcinoma in situ were: 74 (IQR: 63–84) for low grade, 70 (IQR: 52–79) for intermediate grade and 74 (IQR: 66–83) for high grade.

Conclusion At the lowest threshold, the AI system yielded calcification-related PPV3 values that increased across categories, similar as seen in human evaluation. The strongest loss in AI-based breast cancer detection was observed for invasively assessed calcifications with the lowest suspicion of malignancy, yet with a comparable decrease in the false-positive rate. An AI-score based stratification of malignant lesions could not be determined.

Key Points:

  • The AI-based PPV3 for calcifications is comparable to human assessment.

  • AI showed a lower detection performance of screen-positive and screen-negative lesions in category 4a.

  • Histological subgroups could not be discriminated by AI scores.

Citation Format

  • Weigel S, Brehl AK, Heindel W et al. Artificial Intelligence for Indication of Invasive Assessment of Calcifications in Mammography Screening. Fortschr Röntgenstr 2023; 195: 38 – 46



Publication History

Received: 08 July 2022

Accepted: 16 October 2022

Article published online:
01 January 2023

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

Crossref Cited-by logo
Article Citations