Subscribe to RSS
DOI: 10.1055/a-1973-3038
Listening with an Ageing Brain – a Cognitive Challenge
Article in several languages: deutsch | EnglishAbstract
Hearing impairment has been recently identified as a major modifiable risk factor for cognitive decline in later life and has been becoming of increasing scientific interest. Sensory and cognitive decline are connected by complex bottom-up and top-down processes, a sharp distinction between sensation, perception, and cognition is impossible. This review provides a comprehensive overview on the effects of healthy and pathological aging on auditory as well as cognitive functioning on speech perception and comprehension, as well as specific auditory deficits in the 2 most common neurodegenerative diseases in old age: Alzheimer disease and Parkinson syndrome. Hypotheses linking hearing loss to cognitive decline are discussed, and current knowledge on the effect of hearing rehabilitation on cognitive functioning is presented. This article provides an overview of the complex relationship between hearing and cognition in old age.
Key words
age related hearing loss - presbycusis - central auditory processing disorder - neurocognitive disorder - Alzheimer disease - Parkinson syndrome - hearing rehabilitationPublication History
Article published online:
02 May 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Stangl, Werner. Online Lexikon für Psychologie und Pädagogik
- 2 Flanagan DP, Dixon SG. The Cattell-Horn-Carroll Theory of Cognitive Abilities. In: Encyclopedia of Special Education. John Wiley & Sons, Ltd; 2014
- 3 American Psychiatric Association, Peter Falkai, Hans-Ulrich Wittchen Diagnostisches und Statistisches Manual Psychischer Störungen DSM-5. 2. korrigierte Auflage 2018. Hogrefe; 2018
- 4 Tucker-Drob EM. Neurocognitive functions and everyday functions change together in old age. Neuropsychology 2011; 25: 368-377 DOI: 10.1037/a0022348.
- 5 Tucker-Drob EM. Cognitive Aging and Dementia: A Life Span Perspective. Annu Rev. Dev Psychol 2019; 1: 177-196 DOI: 10.1146/annurev-devpsych-121318-085204.
- 6 Baltes PB. [Age and aging as incomplete architecture of human ontogenesis]. Z Gerontol Geriatr 1999; 32: 433-448 DOI: 10.1007/s003910050141.
- 7 Tucker-Drob EM, de la Fuente J, Köhncke Y. et al. A strong dependency between changes in fluid and crystallized abilities in human cognitive aging. Sci Adv 2022; 8: eabj2422 DOI: 10.1126/sciadv.abj2422.
- 8 Hartshorne JK, Germine LT. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol Sci 2015; 26: 433-443 DOI: 10.1177/0956797614567339.
- 9 Tucker-Drob EM. Global and domain-specific changes in cognition throughout adulthood. Dev Psychol 2011; 47: 331-343 DOI: 10.1037/a0021361.
- 10 Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 2004; 44: 195-208 DOI: 10.1016/j.neuron.2004.09.006.
- 11 Hedden T, Gabrieli JDE. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004; 5: 87-96 DOI: 10.1038/nrn1323.
- 12 Jagust W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 2013; 77: 219-234 DOI: 10.1016/j.neuron.2013.01.002.
- 13 Baltes PB, Dittmann-Kohli F, Kliegl R. Reserve capacity of the elderly in aging-sensitive tests of fluid intelligence: replication and extension. Psychol Aging 1986; 1: 172-177 DOI: 10.1037/0882-7974.1.2.172.
- 14 Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D. et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement J Alzheimers Assoc 2020; 16: 1305-1311 DOI: 10.1016/j.jalz.2018.07.219.
- 15 Tucker AM, Stern Y. Cognitive reserve in aging. Curr Alzheimer Res 2011; 8: 354-360 DOI: 10.2174/156720511795745320.
- 16 Stenfelt S, Rönnberg J. The signal-cognition interface: interactions between degraded auditory signals and cognitive processes. Scand J Psychol 2009; 50: 385-393 DOI: 10.1111/j.1467-9450.2009.00748.x.
- 17 Wingfield A, Tun PA. Cognitive Supports and Cognitive Constraints on Comprehension of Spoken Language. J Am Acad Audiol 2007; 18: 548-558 DOI: 10.3766/jaaa.18.7.3.
- 18 Gordon-Salant S, Shader MJ, Wingfield A. Age-Related Changes in Speech Understanding: Peripheral Versus Cognitive Influences. In: Helfer KS, Bartlett EL, Popper AN, et al., Hrsg. Aging and Hearing: Causes and Consequences. Cham: Springer International Publishing; 2020: 199-230
- 19 Johnson JCS, Marshall CR, Weil RS. et al. Hearing and dementia: from ears to brain. Brain J Neurol 2021; 144: 391-401 DOI: 10.1093/brain/awaa429.
- 20 World Health Organization World report on hearing. Geneva: World Health Organization; 2021
- 21 Davis A, McMahon CM, Pichora-Fuller KM. et al. Aging and Hearing Health: The Life-course Approach. The Gerontologist 2016; 56: S256-S267 DOI: 10.1093/geront/gnw033.
- 22 Lin FR, Yaffe K, Xia J. et al. Hearing loss and cognitive decline in older adults. JAMA Intern Med 2013; 173: 293-299 DOI: 10.1001/jamainternmed.2013.1868.
- 23 Loughrey DG, Kelly ME, Kelley GA. et al. Association of Age-Related Hearing Loss With Cognitive Function, Cognitive Impairment, and Dementia: A Systematic Review and Meta-analysis. JAMA Otolaryngol-- Head Neck Surg 2018; 144: 115-126 DOI: 10.1001/jamaoto.2017.2513.
- 24 Livingston G, Huntley J, Sommerlad A. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet Lond Engl 2020; 396: 413-446 DOI: 10.1016/S0140-6736(20)30367-6.
- 25 Livingston G, Sommerlad A, Orgeta V. et al. Dementia prevention, intervention, and care. Lancet Lond Engl 2017; 390: 2673-2734 DOI: 10.1016/S0140-6736(17)31363-6.
- 26 Rutherford BR, Brewster K, Golub JS. et al. Sensation and Psychiatry: Linking Age-Related Hearing Loss to Late-Life Depression and Cognitive Decline. Am J Psychiatry 2018; 175: 215-224 DOI: 10.1176/appi.ajp.2017.17040423.
- 27 Brewster K, Choi CJ, He X. et al. Hearing Rehabilitative Treatment for Older Adults With Comorbid Hearing Loss and Depression: Effects on Depressive Symptoms and Executive Function. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry 2022; 30: 448-458 DOI: 10.1016/j.jagp.2021.08.006.
- 28 Brewster KK, Pavlicova M, Stein A. et al. A pilot randomized controlled trial of hearing aids to improve mood and cognition in older adults. Int J Geriatr Psychiatry 2020; 35: 842-850 DOI: 10.1002/gps.5311.
- 29 Bigelow RT, Reed NS, Brewster KK. et al. Association of Hearing Loss With Psychological Distress and Utilization of Mental Health Services Among Adults in the United States. JAMA Netw Open 2020; 3: e2010986 DOI: 10.1001/jamanetworkopen.2020.10986.
- 30 Orji A, Kamenov K, Dirac M. et al. Global and regional needs, unmet needs and access to hearing aids. Int J Audiol 2020; 59: 166-172 DOI: 10.1080/14992027.2020.1721577.
- 31 Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 2017; 349: 138-147 DOI: 10.1016/j.heares.2017.01.003.
- 32 Keithley EM. Pathology and mechanisms of cochlear aging. J Neurosci Res 2020; 98: 1674-1684 DOI: 10.1002/jnr.24439.
- 33 Frisina RD, Ding B, Zhu X. et al. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons. Aging 2016; 8: 2081-2099 DOI: 10.18632/aging.101045.
- 34 Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear Res 2015; 330: 191-199 DOI: 10.1016/j.heares.2015.02.009.
- 35 Wu PZ, Liberman LD, Bennett K. et al. Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear. Neuroscience 2019; 407: 8-20 DOI: 10.1016/j.neuroscience.2018.07.053.
- 36 Gates GA, Mills JH. Presbycusis. The Lancet 2005; 366: 1111-1120 DOI: 10.1016/S0140-6736(05)67423-5.
- 37 Dubno JR, Eckert MA, Lee F-S. et al. Classifying human audiometric phenotypes of age-related hearing loss from animal models. J Assoc Res Otolaryngol JARO 2013; 14: 687-701 DOI: 10.1007/s10162-013-0396-x.
- 38 Fischer N, Weber B, Riechelmann H. [Presbycusis – Age Related Hearing Loss]. Laryngorhinootologie 2016; 95: 497-510 DOI: 10.1055/s-0042-106918.
- 39 Michel O. [DIN EN ISO 7029:2017-06 : The current DIN thresholds for evaluating normal hearing]. HNO 2021; 69: 1014-1018 DOI: 10.1007/s00106-021-01111-3.
- 40 Tremblay KL, Pinto A, Fischer ME. et al. Self-Reported Hearing Difficulties Among Adults With Normal Audiograms: The Beaver Dam Offspring Study. Ear Hear 2015; 36: e290-e299 DOI: 10.1097/AUD.0000000000000195.
- 41 Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci Off J Soc Neurosci 2011; 31: 13452-13457 DOI: 10.1523/JNEUROSCI.2156-11.2011.
- 42 Bajin MD, Dahm V, Lin VYW. Hidden hearing loss: current concepts. Curr Opin Otolaryngol Head Neck Surg 2022; DOI: 10.1097/MOO.0000000000000824.
- 43 C Kohrman D, Wan G, Cassinotti L et al. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10: a035493 DOI: 10.1101/cshperspect.a035493.
- 44 Pienkowski M. On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms. Ear Hear 2017; 38: 135-148 DOI: 10.1097/AUD.0000000000000388.
- 45 Plack CJ, Barker D, Prendergast G. Perceptual consequences of „hidden“ hearing loss. Trends Hear 2014; 18: 2331216514550621 DOI: 10.1177/2331216514550621.
- 46 Parthasarathy A, Kujawa SG. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing. J Neurosci Off J Soc Neurosci 2018; 38: 7108-7119 DOI: 10.1523/JNEUROSCI.3240-17.2018.
- 47 Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 2017; 8: 14487 DOI: 10.1038/ncomms14487.
- 48 Choi JE, Seok JM, Ahn J. et al. Hidden hearing loss in patients with Charcot-Marie-Tooth disease type 1A. Sci Rep 2018; 8: 10335 DOI: 10.1038/s41598-018-28501-y.
- 49 Mulders WHAM, Chin IL, Robertson D. Persistent hair cell malfunction contributes to hidden hearing loss. Hear Res 2018; 361: 45-51 DOI: 10.1016/j.heares.2018.02.001.
- 50 Hoben R, Easow G, Pevzner S. et al. Outer Hair Cell and Auditory Nerve Function in Speech Recognition in Quiet and in Background Noise. Front Neurosci 2017; 11: 157 DOI: 10.3389/fnins.2017.00157.
- 51 Sergeyenko Y, Lall K, Liberman MC. et al. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci Off J Soc Neurosci 2013; 33: 13686-13694 DOI: 10.1523/JNEUROSCI.1783-13.2013.
- 52 Grant KJ, Mepani AM, Wu P. et al. Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. J Neurophysiol 2020; 124: 418-431 DOI: 10.1152/jn.00016.2020.
- 53 Jayakody DMP, Friedland PL, Martins RN. et al. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review. Front Neurosci 2018; 12: 125 DOI: 10.3389/fnins.2018.00125.
- 54 Ouda L, Profant O, Syka J. Age-related changes in the central auditory system. Cell Tissue Res 2015; 361: 337-358 DOI: 10.1007/s00441-014-2107-2.
- 55 Hedman AM, van Haren NEM, Schnack HG. et al. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 2012; 33: 1987-2002 DOI: 10.1002/hbm.21334.
- 56 Mori S, Onda K, Fujita S. et al. Brain atrophy in middle age using magnetic resonance imaging scans from Japan’s health screening programme. Brain Commun 2022; 4: fcac211 DOI: 10.1093/braincomms/fcac211.
- 57 Miller KL, Alfaro-Almagro F, Bangerter NK. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 2016; 19: 1523-1536 DOI: 10.1038/nn.4393.
- 58 Lemaitre H, Goldman AL, Sambataro F. et al. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?. Neurobiol Aging 2012; 33: e1-e9 DOI: 10.1016/j.neurobiolaging.2010.07.013.
- 59 Raz N, Gunning FM, Head D. et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex N Y N 1991 1997; 7: 268-282 DOI: 10.1093/cercor/7.3.268.
- 60 Raz N, Rodrigue KM, Head D. et al. Differential aging of the medial temporal lobe: a study of a five-year change. Neurology 2004; 62: 433-438 DOI: 10.1212/01.wnl.0000106466.09835.46.
- 61 Raz N, Rodrigue KM, Kennedy KM. et al. Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology 2007; 21: 149-157 DOI: 10.1037/0894-4105.21.2.149.
- 62 Westlye LT, Walhovd KB, Dale AM. et al. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex N Y N 1991 2010; 20: 2055-2068 DOI: 10.1093/cercor/bhp280.
- 63 Vidal-Pineiro D, Parker N, Shin J. et al. Cellular correlates of cortical thinning throughout the lifespan. Sci Rep 2020; 10: 21803 DOI: 10.1038/s41598-020-78471-3.
- 64 Scahill RI, Frost C, Jenkins R. et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 2003; 60: 989-994 DOI: 10.1001/archneur.60.7.989.
- 65 Braak H, Thal DR, Ghebremedhin E. et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960-969 DOI: 10.1097/NEN.0b013e318232a379.
- 66 Pettemeridou E, Kallousia E, Constantinidou F. Regional Brain Volume, Brain Reserve and MMSE Performance in Healthy Aging From the NEUROAGE Cohort: Contributions of Sex, Education, and Depression Symptoms. Front Aging Neurosci 2021; 13: 711301 DOI: 10.3389/fnagi.2021.711301.
- 67 Kalpouzos G, Persson J, Nyberg L. Local brain atrophy accounts for functional activity differences in normal aging. Neurobiol Aging 2012; 33: 623.e1-623.e13 DOI: 10.1016/j.neurobiolaging.2011.02.021.
- 68 Lin FR, Ferrucci L, An Y. et al. Association of hearing impairment with brain volume changes in older adults. NeuroImage 2014; 90: 84-92 DOI: 10.1016/j.neuroimage.2013.12.059.
- 69 Husain FT, Medina RE, Davis CW. et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 2011; 1369: 74-88 DOI: 10.1016/j.brainres.2010.10.095.
- 70 Boyen K, Langers DRM, de Kleine E. et al. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 2013; 295: 67-78 DOI: 10.1016/j.heares.2012.02.010.
- 71 Rosemann S, Thiel CM. Neuroanatomical changes associated with age-related hearing loss and listening effort. Brain Struct Funct 2020; 225: 2689-2700 DOI: 10.1007/s00429-020-02148-w.
- 72 Peelle JE, Troiani V, Grossman M. et al. Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci Off J Soc Neurosci 2011; 31: 12638-12643 DOI: 10.1523/JNEUROSCI.2559-11.2011.
- 73 Eckert MA, Cute SL, Vaden KI. et al. Auditory cortex signs of age-related hearing loss. J Assoc Res Otolaryngol JARO 2012; 13: 703-713 DOI: 10.1007/s10162-012-0332-5.
- 74 Chang Y, Lee S-H, Lee Y-J. et al. Auditory neural pathway evaluation on sensorineural hearing loss using diffusion tensor imaging. NeuroReport 2004; 15: 1699-1703 DOI: 10.1097/01.wnr.0000134584.10207.1a.
- 75 Profant O, Balogová Z, Dezortová M. et al. Metabolic changes in the auditory cortex in presbycusis demonstrated by MR spectroscopy. Exp Gerontol 2013; 48: 795-800 DOI: 10.1016/j.exger.2013.04.012.
- 76 Gao F, Wang G, Ma W. et al. Decreased auditory GABA+concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. NeuroImage 2015; 106: 311-316 DOI: 10.1016/j.neuroimage.2014.11.023.
- 77 Peelle JE, Wingfield A. The Neural Consequences of Age-Related Hearing Loss. Trends Neurosci 2016; 39: 486-497 DOI: 10.1016/j.tins.2016.05.001.
- 78 Gordon-Salant S, Yeni-Komshian G, Fitzgibbons P. The role of temporal cues in word identification by younger and older adults: effects of sentence context. J Acoust Soc Am 2008; 124: 3249-3260 DOI: 10.1121/1.2982409.
- 79 Schvartz KC, Chatterjee M, Gordon-Salant S. Recognition of spectrally degraded phonemes by younger, middle-aged, and older normal-hearing listeners. J Acoust Soc Am 2008; 124: 3972-3988 DOI: 10.1121/1.2997434.
- 80 Goupell MJ, Gaskins CR, Shader MJ. et al. Age-Related Differences in the Processing of Temporal Envelope and Spectral Cues in a Speech Segment. Ear Hear 2017; 38: e335-e342 DOI: 10.1097/AUD.0000000000000447.
- 81 Gordon-Salant S, Yeni-Komshian GH, Fitzgibbons PJ. Recognition of accented English in quiet by younger normal-hearing listeners and older listeners with normal-hearing and hearing loss. J Acoust Soc Am 2010; 128: 444-455 DOI: 10.1121/1.3397409.
- 82 Gordon-Salant S, Zion DJ, Espy-Wilson C. Recognition of time-compressed speech does not predict recognition of natural fast-rate speech by older listeners. J Acoust Soc Am 2014; 136: EL268-EL274 DOI: 10.1121/1.4895014.
- 83 Helfer KS, Freyman RL. Aging and Speech-on-Speech Masking. Ear Hear 2008; 29: 87-98 DOI: 10.1097/AUD.0b013e31815d638b.
- 84 Dubno JR, Dirks DD, Morgan DE. Effects of age and mild hearing loss on speech recognition in noise. J Acoust Soc Am 1984; 76: 87-96 DOI: 10.1121/1.391011.
- 85 Tun PA, Wingfield A. One voice too many: adult age differences in language processing with different types of distracting sounds. J Gerontol B Psychol Sci Soc Sci 1999; 54: P317-P327 DOI: 10.1093/geronb/54b.5.p317.
- 86 Pronk M, Deeg DJH, Festen JM. et al. Decline in older persons’ ability to recognize speech in noise: the influence of demographic, health-related, environmental, and cognitive factors. Ear Hear 2013; 34: 722-732 DOI: 10.1097/AUD.0b013e3182994eee.
- 87 Füllgrabe C, Moore BCJ, Stone MA. Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Front Aging Neurosci 2015; 6: 347 DOI: 10.3389/fnagi.2014.00347.
- 88 Gallun FJ. Impaired Binaural Hearing in Adults: A Selected Review of the Literature. Front Neurosci 2021; 15: 610957 DOI: 10.3389/fnins.2021.610957.
- 89 Hommet C, Mondon K, Berrut G. et al. Central auditory processing in aging: the dichotic listening paradigm. J Nutr Health Aging 2010; 14: 751-756 DOI: 10.1007/s12603-010-0097-7.
- 90 Dillard LK, Fischer ME, Pinto A. et al. Longitudinal Decline on the Dichotic Digits Test. Am J Audiol 2020; 29: 862-872 DOI: 10.1044/2020_AJA-20-00098.
- 91 Harris KC. The Aging Auditory System: Electrophysiology. In: Helfer KS, Bartlett EL, Popper AN, et al., Hrsg. Aging and Hearing: Causes and Consequences. Cham: Springer International Publishing; 2020: 117-141
- 92 Morrison C, Rabipour S, Knoefel F. et al. Auditory Event-related Potentials in Mild Cognitive Impairment and Alzheimer’s Disease. Curr Alzheimer Res 2018; 15: 702-715 DOI: 10.2174/1567205015666180123123209.
- 93 Gates GA. Central presbycusis: an emerging view. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg 2012; 147: 1-2 DOI: 10.1177/0194599812446282.
- 94 Humes LE, Dubno JR, Gordon-Salant S. et al. Central presbycusis: a review and evaluation of the evidence. J Am Acad Audiol 2012; 23: 635-666 DOI: 10.3766/jaaa.23.8.5.
- 95 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), Hrsg. S1-Leitlinie 2019 Auditive Verarbeitungs- und Wahrnehmungsstörungen (AVWS) Herausgegeben von der Deutschen Gesellschaft für Phoniatrie und Pädaudiologie
- 96 Schneider BA, Pichora-Fuller K, Daneman M. Effects of Senescent Changes in Audition and Cognition on Spoken Language Comprehension. In: Gordon-Salant S, Frisina RD, Popper AN, et al., Hrsg. The Aging Auditory System. New York, NY: Springer; 2010: 167-210
- 97 Janse E. A non-auditory measure of interference predicts distraction by competing speech in older adults. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2012; 19: 741-758 DOI: 10.1080/13825585.2011.652590.
- 98 Ward KM, Shen J, Souza PE. et al. Age-Related Differences in Listening Effort During Degraded Speech Recognition. Ear Hear 2017; 38: 74-84 DOI: 10.1097/AUD.0000000000000355.
- 99 Arlinger S, Lunner T, Lyxell B. et al. The emergence of cognitive hearing science. Scand J Psychol 2009; 50: 371-384 DOI: 10.1111/j.1467-9450.2009.00753.x.
- 100 Luce PA, Pisoni DB. Recognizing spoken words: the neighborhood activation model. Ear Hear 1998; 19: 1-36 DOI: 10.1097/00003446-199802000-00001.
- 101 Taler V, Aaron GP, Steinmetz LG. et al. Lexical neighborhood density effects on spoken word recognition and production in healthy aging. J Gerontol B Psychol Sci Soc Sci 2010; 65: 551-560 DOI: 10.1093/geronb/gbq039.
- 102 Helfer KS, Jesse A. Lexical influences on competing speech perception in younger, middle-aged, and older adults. J Acoust Soc Am 2015; 138: 363-376 DOI: 10.1121/1.4923155.
- 103 Jesse A, Helfer KS. Lexical Influences on Errors in Masked Speech Perception in Younger, Middle-Aged, and Older Adults. J Speech Lang Hear Res JSLHR 2019; 62: 1152-1166 DOI: 10.1044/2018_JSLHR-H-ASCC7-18-0091.
- 104 Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol 2012; 63: 1-29 DOI: 10.1146/annurev-psych-120710-100422.
- 105 Rönnberg J, Holmer E, Rudner M. Cognitive Hearing Science: Three Memory Systems, Two Approaches, and the Ease of Language Understanding Model. J Speech Lang Hear Res JSLHR 2021; 64: 359-370 DOI: 10.1044/2020_JSLHR-20-00007.
- 106 Peelle JE. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior. Ear Hear 2018; 39: 204-214 DOI: 10.1097/AUD.0000000000000494.
- 107 Rudner M, Rönnberg J, Lunner T. Working memory supports listening in noise for persons with hearing impairment. J Am Acad Audiol 2011; 22: 156-167 DOI: 10.3766/jaaa.22.3.4.
- 108 Gordon-Salant S, Cole SS. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing. Ear Hear 2016; 37: 593-602 DOI: 10.1097/AUD.0000000000000316.
- 109 Benichov J, Cox LC, Tun PA. et al. Word recognition within a linguistic context: effects of age, hearing acuity, verbal ability, and cognitive function. Ear Hear 2012; 33: 250-256 DOI: 10.1097/AUD.0b013e31822f680f.
- 110 Rogers CS, Jacoby LL, Sommers MS. Frequent false hearing by older adults: the role of age differences in metacognition. Psychol Aging 2012; 27: 33-45 DOI: 10.1037/a0026231.
- 111 Rogers CS. Semantic priming, not repetition priming, is to blame for false hearing. Psychon Bull Rev 2017; 24: 1194-1204 DOI: 10.3758/s13423-016-1185-4.
- 112 Failes E, Sommers MS, Jacoby LL. Blurring past and present: Using false memory to better understand false hearing in young and older adults. Mem Cognit 2020; 48: 1403-1416 DOI: 10.3758/s13421-020-01068-8.
- 113 Van Os M, Kray J, Demberg V. Mishearing as a Side Effect of Rational Language Comprehension in Noise. Front Psychol 2021; 12: 679278 DOI: 10.3389/fpsyg.2021.679278.
- 114 Pichora-Fuller MK, Kramer SE, Eckert MA. et al. Hearing Impairment and Cognitive Energy: The Framework for Understanding Effortful Listening (FUEL). Ear Hear 2016; 37: 5S DOI: 10.1097/AUD.0000000000000312.
- 115 Vos T, Lim SS, Abbafati C. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 2020; 396: 1204-1222 DOI: 10.1016/S0140-6736(20)30925-9.
- 116 GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022; 7: e105-e125 DOI: 10.1016/S2468-2667(21)00249-8.
- 117 Deutsche Alzheimer Gesellschaft e.V. Infoblatt 1: Die Häufigkeit von Demenzerkrankungen. . Im Internet: https://www.deutsche-alzheimer.de/publikationen/informationsblaetter;
- 118 Wancata J, Musalek M, Alexandrowicz R. et al. Number of dementia sufferers in Europe between the years 2000 and 2050. Eur Psychiatry J Assoc Eur Psychiatr 2003; 18: 306-313 DOI: 10.1016/j.eurpsy.2003.03.003.
- 119 Norton S, Matthews FE, Barnes DE. et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 2014; 13: 788-794 DOI: 10.1016/S1474-4422(14)70136-X.
- 120 Jessen F. Die Nationale Demenzstrategie. Fortschritte Neurol · Psychiatr 2022; 90: 320-325 DOI: 10.1055/a-1808-6459.
- 121 Hans-Holger Bleß, Doron Benjamin Stein Weißbuch Versorgung der frühen Alzheimer Krankheit. Springer; 2021
- 122 Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019; 179: 312-339 DOI: 10.1016/j.cell.2019.09.001.
- 123 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), Hrsg. S3-Leitlinie „Demenzen“ (Langversion – Januar 2016)
- 124 Urbach H, Egger K. MRT bei neurodegenerativen Erkrankungen. : 18.
- 125 Crutch SJ, Lehmann M, Schott JM. et al. Posterior cortical atrophy. Lancet Neurol 2012; 11: 170-178 DOI: 10.1016/S1474-4422(11)70289-7.
- 126 Ossenkoppele R, Pijnenburg YAL, Perry DC. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain J Neurol 2015; 138: 2732-2749 DOI: 10.1093/brain/awv191.
- 127 Warren JD, Fletcher PD, Golden HL. The paradox of syndromic diversity in Alzheimer disease. Nat Rev Neurol 2012; 8: 451-464 DOI: 10.1038/nrneurol.2012.135.
- 128 Sinha UK, Hollen KM, Rodriguez R. et al. Auditory system degeneration in Alzheimer’s disease. Neurology 1993; 43: 779-785 DOI: 10.1212/wnl.43.4.779.
- 129 Goll JC, Kim LG, Hailstone JC. et al. Auditory object cognition in dementia. Neuropsychologia 2011; 49: 2755-2765 DOI: 10.1016/j.neuropsychologia.2011.06.004.
- 130 Golden HL, Agustus JL, Goll JC. et al. Functional neuroanatomy of auditory scene analysis in Alzheimer’s disease. NeuroImage Clin 2015; 7: 699-708 DOI: 10.1016/j.nicl.2015.02.019.
- 131 Golden HL, Agustus JL, Nicholas JM. et al. Functional neuroanatomy of spatial sound processing in Alzheimer’s disease. Neurobiol Aging 2016; 39: 154-164 DOI: 10.1016/j.neurobiolaging.2015.12.006.
- 132 Goll JC, Kim LG, Ridgway GR. et al. Impairments of auditory scene analysis in Alzheimer’s disease. Brain J Neurol 2012; 135: 190-200 DOI: 10.1093/brain/awr260.
- 133 Idrizbegovic E, Hederstierna C, Dahlquist M. et al. Central auditory function in early Alzheimer’s disease and in mild cognitive impairment. Age Ageing 2011; 40: 249-254 DOI: 10.1093/ageing/afq168.
- 134 Coebergh JAF, McDowell S. van Woerkom TCAM, et al. Auditory Agnosia for Environmental Sounds in Alzheimer’s Disease: Not Hearing and Not Listening?. J Alzheimers Dis JAD 2020; 73: 1407-1419 DOI: 10.3233/JAD-190431.
- 135 Uhlmann RF, Larson EB, Koepsell TD. Hearing impairment and cognitive decline in senile dementia of the Alzheimer’s type. J Am Geriatr Soc 1986; 34: 207-210 DOI: 10.1111/j.1532-5415.1986.tb04204.x.
- 136 Lin FR, Metter EJ, O’Brien RJ. et al. Hearing loss and incident dementia. Arch Neurol 2011; 68: 214-220 DOI: 10.1001/archneurol.2010.362.
- 137 Taljaard DS, Olaithe M, Brennan-Jones CG. et al. The relationship between hearing impairment and cognitive function: a meta-analysis in adults. Clin Otolaryngol 2016; 41: 718-729 DOI: 10.1111/coa.12607.
- 138 Gates GA, Cobb JL, Linn RT. et al. Central auditory dysfunction, cognitive dysfunction, and dementia in older people. Arch Otolaryngol Head Neck Surg 1996; 122: 161-167 DOI: 10.1001/archotol.1996.01890140047010.
- 139 Gates GA, Beiser A, Rees TS. et al. Central auditory dysfunction may precede the onset of clinical dementia in people with probable Alzheimer’s disease. J Am Geriatr Soc 2002; 50: 482-488 DOI: 10.1046/j.1532-5415.2002.50114.x.
- 140 Gates GA, Anderson ML, McCurry SM. et al. Central Auditory Dysfunction as a Harbinger of Alzheimer Dementia. Arch Otolaryngol Neck Surg 2011; 137: 390-395 DOI: 10.1001/archoto.2011.28.
- 141 Quaranta N, Coppola F, Casulli M. et al. The prevalence of peripheral and central hearing impairment and its relation to cognition in older adults. Audiol Neurootol 2014; 19: 10-14 DOI: 10.1159/000371597.
- 142 Sardone R, Battista P, Donghia R. et al. Age-Related Central Auditory Processing Disorder, MCI, and Dementia in an Older Population of Southern Italy. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg 2020; 163: 348-355 DOI: 10.1177/0194599820913635.
- 143 Mamo SK, Reed NS, Sharrett AR. et al. Relationship Between Domain-Specific Cognitive Function and Speech-in-Noise Performance in Older Adults: The Atherosclerosis Risk in Communities Hearing Pilot Study. Am J Audiol 2019; 28: 1006-1014 DOI: 10.1044/2019_AJA-19-00043.
- 144 Iliadou V, Kaprinis S. Clinical psychoacoustics in Alzheimer’s disease central auditory processing disorders and speech deterioration. Ann Gen Hosp Psychiatry 2003; 2: 12 DOI: 10.1186/1475-2832-2-12.
- 145 Tarawneh HY, Menegola HK, Peou A. et al. Central Auditory Functions of Alzheimer’s Disease and Its Preclinical Stages: A Systematic Review and Meta-Analysis. Cells 2022; 11: 1007 DOI: 10.3390/cells11061007.
- 146 Powell DS, Oh ES, Reed NS. et al. Hearing Loss and Cognition: What We Know and Where We Need to Go. Front Aging Neurosci 2022; 13
- 147 Golob EJ, Ringman JM, Irimajiri R. et al. Cortical event-related potentials in preclinical familial Alzheimer disease. Neurology 2009; 73: 1649-1655 DOI: 10.1212/WNL.0b013e3181c1de77.
- 148 Tönges L, Ehret R, Lorrain M. et al. Epidemiologie der Parkinsonerkrankung und aktuelle ambulante Versorgungskonzepte in Deutschland. Fortschritte Neurol · Psychiatr 2017; 85: 329-335 DOI: 10.1055/s-0043-103275.
- 149 de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5: 525-535 DOI: 10.1016/S1474-4422(06)70471-9.
- 150 Heinzel S, Berg D, Binder S. et al. Do We Need to Rethink the Epidemiology and Healthcare Utilization of Parkinson’s Disease in Germany?. Front Neurol 2018; 9: 500 DOI: 10.3389/fneur.2018.00500.
- 151 Pringsheim T, Jette N, Frolkis A. et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord Off J Mov Disord Soc 2014; 29: 1583-1590 DOI: 10.1002/mds.25945.
- 152 Bach J-P, Ziegler U, Deuschl G. et al. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov Disord Off J Mov Disord Soc 2011; 26: 2286-2290 DOI: 10.1002/mds.23878.
- 153 Poewe W, Seppi K, Tanner CM. et al. Parkinson disease. Nat Rev Dis Primer 2017; 3: 17013 DOI: 10.1038/nrdp.2017.13.
- 154 Antony PMA, Diederich NJ, Krüger R. et al. The hallmarks of Parkinson’s disease. FEBS J 2013; 280: 5981-5993 DOI: 10.1111/febs.12335.
- 155 Kalia LV, Lang AE. Parkinson’s disease. Lancet Lond Engl 2015; 386: 896-912 DOI: 10.1016/S0140-6736(14)61393-3.
- 156 Williams-Gray CH, Worth PF. Parkinson’s disease. Medicine (Baltimore) 2016; 44: 542-546 DOI: 10.1016/j.mpmed.2016.06.001.
- 157 Chaudhuri KR, Healy DG, Schapira AHV. et al. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006; 5: 235-245 DOI: 10.1016/S1474-4422(06)70373-8.
- 158 Riedel O, Klotsche J, Spottke A. et al. Cognitive impairment in 873 patients with idiopathic Parkinson’s disease. Results from the German Study on Epidemiology of Parkinson’s Disease with Dementia (GEPAD). J Neurol 2008; 255: 255-264 DOI: 10.1007/s00415-008-0720-2.
- 159 Aarsland D, Andersen K, Larsen JP. et al. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 2001; 56: 730-736 DOI: 10.1212/wnl.56.6.730.
- 160 Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord Off J Mov Disord Soc 2004; 19: 1043-1049 DOI: 10.1002/mds.20216.
- 161 Williams-Gray CH, Mason SL, Evans JR. et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry 2013; 84: 1258-1264 DOI: 10.1136/jnnp-2013-305277.
- 162 Lai S-W, Liao K-F, Lin C-L. et al. Hearing loss may be a non-motor feature of Parkinson’s disease in older people in Taiwan. Eur J Neurol 2014; 21: 752-757 DOI: 10.1111/ene.12378.
- 163 Vitale C, Marcelli V, Allocca R. et al. Hearing impairment in Parkinson’s disease: expanding the nonmotor phenotype. Mov Disord Off J Mov Disord Soc 2012; 27: 1530-1535 DOI: 10.1002/mds.25149.
- 164 Vitale C, Marcelli V, Abate T. et al. Speech discrimination is impaired in parkinsonian patients: Expanding the audiologic findings of Parkinson’s disease. Parkinsonism Relat Disord 2016; 22: S138-S143 DOI: 10.1016/j.parkreldis.2015.09.040.
- 165 Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson’s Disease. Mov Disord Off J Mov Disord Soc 2020; 35: 537-550 DOI: 10.1002/mds.28000.
- 166 Li S, Cheng C, Lu L. et al. Hearing Loss in Neurological Disorders. Front Cell Dev Biol 2021; 9: 716300 DOI: 10.3389/fcell.2021.716300.
- 167 Simonet C, Bestwick J, Jitlal M. et al. Assessment of Risk Factors and Early Presentations of Parkinson Disease in Primary Care in a Diverse UK Population. JAMA Neurol 2022; 79: 359-369 DOI: 10.1001/jamaneurol.2022.0003.
- 168 Yýlmaz S, Karalý E, Tokmak A. et al. Auditory evaluation in Parkinsonian patients. Eur Arch Oto-Rhino-Laryngol Off J Eur Fed Oto-Rhino-Laryngol Soc EUFOS Affil Ger Soc Oto-Rhino-Laryngol – Head Neck Surg 2009; 266: 669-671 DOI: 10.1007/s00405-009-0933-8.
- 169 Shetty K, Krishnan S, Thulaseedharan JV. et al. Asymptomatic Hearing Impairment Frequently Occurs in Early-Onset Parkinson’s Disease. J Mov Disord 2019; 12: 84-90 DOI: 10.14802/jmd.18048.
- 170 Scarpa A, Cassandro C, Vitale C. et al. A comparison of auditory and vestibular dysfunction in Parkinson’s disease and Multiple System Atrophy. Parkinsonism Relat Disord 2020; 71: 51-57 DOI: 10.1016/j.parkreldis.2020.01.018.
- 171 Leme MS, Sanches SGG, Carvallo RMM. Peripheral hearing in Parkinson’s disease: a systematic review. Int J Audiol 2022; 1-9 DOI: 10.1080/14992027.2022.2109073.
- 172 Pisani V, Sisto R, Moleti A. et al. An investigation of hearing impairment in de-novo Parkinson’s disease patients: A preliminary study. Parkinsonism Relat Disord 2015; 21: 987-991 DOI: 10.1016/j.parkreldis.2015.06.007.
- 173 Seidel K, Mahlke J, Siswanto S. et al. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol Zurich Switz 2015; 25: 121-135 DOI: 10.1111/bpa.12168.
- 174 Folmer RL, Vachhani JJ, Theodoroff SM. et al. Auditory Processing Abilities of Parkinson’s Disease Patients. BioMed Res Int 2017; 2017: 2618587 DOI: 10.1155/2017/2618587.
- 175 Neel AT. Effects of loud and amplified speech on sentence and word intelligibility in Parkinson disease. J Speech Lang Hear Res JSLHR 2009; 52: 1021-1033 DOI: 10.1044/1092-4388(2008/08-0119).
- 176 Sisto R, Viziano A, Stefani A. et al. Lateralization of cochlear dysfunction as a specific biomarker of Parkinson’s disease. Brain Commun 2020; 2: fcaa144 DOI: 10.1093/braincomms/fcaa144.
- 177 Mollaei F, Shiller DM, Baum SR. et al. The Relationship Between Speech Perceptual Discrimination and Speech Production in Parkinson’s Disease. J Speech Lang Hear Res JSLHR 2019; 62: 4256-4268 DOI: 10.1044/2019_JSLHR-S-18-0425.
- 178 Cochen De Cock V, de Verbizier D, Picot MC. et al. Rhythm disturbances as a potential early marker of Parkinson’s disease in idiopathic REM sleep behavior disorder. Ann Clin Transl Neurol 2020; 7: 280-287 DOI: 10.1002/acn3.50982.
- 179 Shalash AS, Hassan DM, Elrassas HH. et al. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease. Front Neurol 2017; 8: 55 DOI: 10.3389/fneur.2017.00055.
- 180 Liu C, Zhang Y, Tang W. et al. Evoked potential changes in patients with Parkinson’s disease. Brain Behav 2017; 7: e00703 DOI: 10.1002/brb3.703.
- 181 de Natale ER, Ginatempo F, Paulus KS. et al. Paired neurophysiological and clinical study of the brainstem at different stages of Parkinson’s Disease. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2015; 126: 1871-1878 DOI: 10.1016/j.clinph.2014.12.017.
- 182 Pötter-Nerger M, Govender S, Deuschl G. et al. Selective changes of ocular vestibular myogenic potentials in Parkinson’s disease. Mov Disord Off J Mov Disord Soc 2015; 30: 584-589 DOI: 10.1002/mds.26114.
- 183 Heitland I, Kenemans JL, Oosting RS. et al. Auditory event-related potentials (P3a, P3b) and genetic variants within the dopamine and serotonin system in healthy females. Behav Brain Res 2013; 249: 55-64 DOI: 10.1016/j.bbr.2013.04.013.
- 184 Pfabigan DM, Seidel E-M, Sladky R. et al. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment. NeuroImage 2014; 96: 12-21 DOI: 10.1016/j.neuroimage.2014.03.077.
- 185 Schomaker J, Berendse HW, Foncke EMJ. et al. Novelty processing and memory formation in Parkinson’s disease. Neuropsychologia 2014; 62: 124-136 DOI: 10.1016/j.neuropsychologia.2014.07.016.
- 186 Solís-Vivanco R, Rodríguez-Violante M, Rodríguez-Agudelo Y. et al. The P3a wave: A reliable neurophysiological measure of Parkinson’s disease duration and severity. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2015; 126: 2142-2149 DOI: 10.1016/j.clinph.2014.12.024.
- 187 Solís-Vivanco R, Rodríguez-Violante M, Cervantes-Arriaga A. et al. Brain oscillations reveal impaired novelty detection from early stages of Parkinson’s disease. NeuroImage Clin 2018; 18: 923-931 DOI: 10.1016/j.nicl.2018.03.024.
- 188 Matsui H, Nishinaka K, Oda M. et al. Auditory event-related potentials in Parkinson’s disease: prominent correlation with attention. Parkinsonism Relat Disord 2007; 13: 394-398 DOI: 10.1016/j.parkreldis.2006.12.012.
- 189 Yilmaz FT, Özkaynak SS, Barçin E. Contribution of auditory P300 test to the diagnosis of mild cognitive impairment in Parkinson’s disease. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 2017; 38: 2103-2109 DOI: 10.1007/s10072-017-3106-3.
- 190 Fan W, Li J, Wei W. et al. Effects of rhythmic auditory stimulation on upper-limb movements in patients with Parkinson’s disease. Parkinsonism Relat Disord 2022; 101: 27-30 DOI: 10.1016/j.parkreldis.2022.06.020.
- 191 Trindade MFD, Viana RA. Effects of auditory or visual stimuli on gait in Parkinsonic patients: a systematic review. Porto Biomed J 2021; 6: e140 DOI: 10.1097/j.pbj.0000000000000140.
- 192 Koshimori Y, Thaut MH. Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson’s disease. Ageing Res Rev 2018; 47: 133-139 DOI: 10.1016/j.arr.2018.07.001.
- 193 Slade K, Plack CJ, Nuttall HE. The Effects of Age-Related Hearing Loss on the Brain and Cognitive Function. Trends Neurosci 2020; 43: 810-821 DOI: 10.1016/j.tins.2020.07.005.
- 194 Wayne RV, Johnsrude IS. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res Rev 2015; 23: 154-166 DOI: 10.1016/j.arr.2015.06.002.
- 195 Uchida Y, Sugiura S, Nishita Y. et al. Age-related hearing loss and cognitive decline — The potential mechanisms linking the two. Auris Nasus Larynx 2019; 46: 1-9 DOI: 10.1016/j.anl.2018.08.010.
- 196 Oluwole OG, James K, Yalcouye A. et al. Hearing loss and brain disorders: A review of multiple pathologies. Open Med Wars Pol 2022; 17: 61-69 DOI: 10.1515/med-2021-0402.
- 197 Gallacher J, Ilubaera V, Ben-Shlomo Y. et al. Auditory threshold, phonologic demand, and incident dementia. Neurology 2012; 79: 1583-1590 DOI: 10.1212/WNL.0b013e31826e263d.
- 198 Deal JA, Betz J, Yaffe K. et al. Hearing Impairment and Incident Dementia and Cognitive Decline in Older Adults: The Health ABC Study. J Gerontol A Biol Sci Med Sci 2017; 72: 703-709 DOI: 10.1093/gerona/glw069.
- 199 Dryden A, Allen HA, Henshaw H. et al. The Association Between Cognitive Performance and Speech-in-Noise Perception for Adult Listeners: A Systematic Literature Review and Meta-Analysis. Trends Hear 2017; 21: 2331216517744675 DOI: 10.1177/2331216517744675.
- 200 Nasreddine ZS, Phillips NA, Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695-699 DOI: 10.1111/j.1532-5415.2005.53221.x.
- 201 Folstein MF, Folstein SE, McHugh PR. „Mini-mental state“. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198 DOI: 10.1016/0022-3956(75)90026-6.
- 202 Teng EL, Chui HC. The Modified Mini-Mental State (3MS) examination. J Clin Psychiatry 1987; 48: 314-318
- 203 Jorgensen LE, Palmer CV, Pratt S. et al. The Effect of Decreased Audibility on MMSE Performance: A Measure Commonly Used for Diagnosing Dementia. J Am Acad Audiol 2016; 27: 311-323 DOI: 10.3766/jaaa.15006.
- 204 Dupuis K, Pichora-Fuller MK, Chasteen AL. et al. Effects of hearing and vision impairments on the Montreal Cognitive Assessment. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2015; 22: 413-437 DOI: 10.1080/13825585.2014.968084.
- 205 Wong CG, Rapport LJ, Billings BA. et al. Hearing loss and verbal memory assessment among older adults. Neuropsychology 2019; 33: 47-59 DOI: 10.1037/neu0000489.
- 206 Völter C, Götze L, Bruene-Cohrs U. et al. Hören und Kognition: neurokognitive Testbatterien in der HNO-Heilkunde. HNO 2020; 68: 155-163 DOI: 10.1007/s00106-019-00762-7.
- 207 Speech understanding and aging Working Group on Speech Understanding and Aging. Committee on Hearing, Bioacoustics, and Biomechanics, Commission on Behavioral and Social Sciences and Education, National Research Council. J Acoust Soc Am 1988; 83: 859-895
- 208 Lindenberger U, Baltes PB. Sensory functioning and intelligence in old age: a strong connection. Psychol Aging 1994; 9: 339-355 DOI: 10.1037//0882-7974.9.3.339.
- 209 Kiely KM, Gopinath B, Mitchell P. et al. Cognitive, health, and sociodemographic predictors of longitudinal decline in hearing acuity among older adults. J Gerontol A Biol Sci Med Sci 2012; 67: 997-1003 DOI: 10.1093/gerona/gls066.
- 210 Pichora-Fuller MK. Cognitive aging and auditory information processing. Int J Audiol 2003; 42: 2S26-32S26
- 211 McCoy SL, Tun PA, Cox LC. et al. Hearing loss and perceptual effort: downstream effects on older adults’ memory for speech. Q J Exp Psychol A 2005; 58: 22-33 DOI: 10.1080/02724980443000151.
- 212 Wong PCM, Ettlinger M, Sheppard JP. et al. Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 2010; 31: 471-479 DOI: 10.1097/AUD.0b013e3181d709c2.
- 213 Sheppard JP, Wang J-P, Wong PCM. Large-scale cortical functional organization and speech perception across the lifespan. PloS One 2011; 6: e16510 DOI: 10.1371/journal.pone.0016510.
- 214 Eckert MA, Vaden KI, Dubno JR. Age-Related Hearing Loss Associations With Changes in Brain Morphology. Trends Hear 2019; 23: 2331216519857267 DOI: 10.1177/2331216519857267.
- 215 Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci 2012; 35: 111-122 DOI: 10.1016/j.tins.2011.09.004.
- 216 Kral A. Auditory critical periods: a review from system’s perspective. Neuroscience 2013; 247: 117-133 DOI: 10.1016/j.neuroscience.2013.05.021.
- 217 Vernon M. Fifty Years of Research on the Intelligence of Deaf and Hard-of-Hearing Children: A Review of Literature and Discussion of Implications. J Deaf Stud Deaf Educ 2005; 10: 225-231 DOI: 10.1093/deafed/eni024.
- 218 Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev 1996; 103: 403-428 DOI: 10.1037/0033-295x.103.3.403.
- 219 Lipnicki DM, Crawford JD, Dutta R. et al. Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study. PLoS Med 2017; 14: e1002261 DOI: 10.1371/journal.pmed.1002261.
- 220 Laughlin GA, McEvoy LK, Barrett-Connor E. et al. Fetuin-A, a new vascular biomarker of cognitive decline in older adults. Clin Endocrinol (Oxf) 2014; 81: 134-140 DOI: 10.1111/cen.12382.
- 221 Jayakody DMP, Wishart J, Stegeman I. et al. Is There an Association Between Untreated Hearing Loss and Psychosocial Outcomes?. Front Aging Neurosci 2022; 14: 868673 DOI: 10.3389/fnagi.2022.868673.
- 222 Pasta A, Szatmari T-I, Christensen JH. et al. Clustering Users Based on Hearing Aid Use: An Exploratory Analysis of Real-World Data. Front Digit Health 2021; 3: 725130 DOI: 10.3389/fdgth.2021.725130.
- 223 Lindenberger U, Ghisletta P. Cognitive and sensory declines in old age: gauging the evidence for a common cause. Psychol Aging 2009; 24: 1-16 DOI: 10.1037/a0014986.
- 224 Deal JA, Goman AM, Albert MS. et al. Hearing treatment for reducing cognitive decline: Design and methods of the Aging and Cognitive Health Evaluation in Elders randomized controlled trial. Alzheimers Dement N Y N 2018; 4: 499-507 DOI: 10.1016/j.trci.2018.08.007.
- 225 Amieva H, Ouvrard C, Giulioli C. et al. Self-Reported Hearing Loss, Hearing Aids, and Cognitive Decline in Elderly Adults: A 25-Year Study. J Am Geriatr Soc 2015; 63: 2099-2104 DOI: 10.1111/jgs.13649.
- 226 Ray J, Popli G, Fell G. Association of Cognition and Age-Related Hearing Impairment in the English Longitudinal Study of Ageing. JAMA Otolaryngol-- Head Neck Surg 2018; 144: 876-882 DOI: 10.1001/jamaoto.2018.1656.
- 227 Maharani A, Dawes P, Nazroo J. et al. Longitudinal Relationship Between Hearing Aid Use and Cognitive Function in Older Americans. J Am Geriatr Soc 2018; 66: 1130-1136 DOI: 10.1111/jgs.15363.
- 228 Sanders ME, Kant E, Smit AL. et al. The effect of hearing aids on cognitive function: A systematic review. PloS One 2021; 16: e0261207 DOI: 10.1371/journal.pone.0261207.
- 229 Dawes P, Cruickshanks KJ, Fischer ME. et al. Hearing-aid use and long-term health outcomes: Hearing handicap, mental health, social engagement, cognitive function, physical health, and mortality. Int J Audiol 2015; 54: 838-844 DOI: 10.3109/14992027.2015.1059503.
- 230 Olze H, Knopke S, Gräbel S. et al. Rapid Positive Influence of Cochlear Implantation on the Quality of Life in Adults 70 Years and Older. Audiol Neurootol 2016; 21: 43-47 DOI: 10.1159/000448354.
- 231 Knopke S, Häussler S, Gräbel S. et al. Age-Dependent Psychological Factors Influencing the Outcome of Cochlear Implantation in Elderly Patients. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2019; 40: e441-e453 DOI: 10.1097/MAO.0000000000002179.
- 232 Shin YJ, Fraysse B, Deguine O. et al. Benefits of cochlear implantation in elderly patients. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg 2000; 122: 602-606 DOI: 10.1067/mhn.2000.98317.
- 233 Pasanisi E, Bacciu A, Vincenti V. et al. Speech recognition in elderly cochlear implant recipients. Clin Otolaryngol Allied Sci 2003; 28: 154-157 DOI: 10.1046/j.1365-2273.2003.00681.x.
- 234 Vermeire K, Brokx JPL, Wuyts FL. et al. Quality-of-life benefit from cochlear implantation in the elderly. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2005; 26: 188-195 DOI: 10.1097/00129492-200503000-00010.
- 235 Moberly AC, Lewis JH, Vasil KJ. et al. Bottom-Up Signal Quality Impacts the Role of Top-Down Cognitive-Linguistic Processing During Speech Recognition by Adults with Cochlear Implants. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2021; 42: S33-S41 DOI: 10.1097/MAO.0000000000003377.
- 236 Tao D, Deng R, Jiang Y. et al. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users. PloS One 2014; 9: e99096 DOI: 10.1371/journal.pone.0099096.
- 237 Moberly AC, Houston DM, Harris MS. et al. Verbal working memory and inhibition-concentration in adults with cochlear implants. Laryngoscope Investig Otolaryngol 2017; 2: 254-261 DOI: 10.1002/lio2.90.
- 238 Winn MB. Rapid Release From Listening Effort Resulting From Semantic Context, and Effects of Spectral Degradation and Cochlear Implants. Trends Hear 2016; 20: 2331216516669723 DOI: 10.1177/2331216516669723.
- 239 Mosnier I, Bebear J-P, Marx M. et al. Improvement of cognitive function after cochlear implantation in elderly patients. JAMA Otolaryngol-- Head Neck Surg 2015; 141: 442-450 DOI: 10.1001/jamaoto.2015.129.
- 240 Mosnier I, Vanier A, Bonnard D. et al. Long-Term Cognitive Prognosis of Profoundly Deaf Older Adults After Hearing Rehabilitation Using Cochlear Implants. J Am Geriatr Soc 2018; 66: 1553-1561 DOI: 10.1111/jgs.15445.
- 241 Castiglione A, Benatti A, Velardita C. et al. Aging, Cognitive Decline and Hearing Loss: Effects of Auditory Rehabilitation and Training with Hearing Aids and Cochlear Implants on Cognitive Function and Depression among Older Adults. Audiol Neurootol 2016; 21: 21-28 DOI: 10.1159/000448350.
- 242 Cosetti MK, Pinkston JB, Flores JM. et al. Neurocognitive testing and cochlear implantation: insights into performance in older adults. Clin Interv Aging 2016; 11: 603-613 DOI: 10.2147/CIA.S100255.
- 243 Sonnet M-H, Montaut-Verient B, Niemier J-Y. et al. Cognitive Abilities and Quality of Life After Cochlear Implantation in the Elderly. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2017; 38: e296-e301 DOI: 10.1097/MAO.0000000000001503.
- 244 Jayakody DMP, Friedland PL, Nel E. et al. Impact of Cochlear Implantation on Cognitive Functions of Older Adults: Pilot Test Results. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2017; 38: e289-e295 DOI: 10.1097/MAO.0000000000001502.
- 245 Mertens G, Andries E, Claes AJ. et al. Cognitive Improvement After Cochlear Implantation in Older Adults With Severe or Profound Hearing Impairment: A Prospective, Longitudinal, Controlled, Multicenter Study. Ear Hear 2021; 42: 606-614 DOI: 10.1097/AUD.0000000000000962.
- 246 Völter C, Götze L, Bajewski M. et al. Cognition and Cognitive Reserve in Cochlear Implant Recipients. Front Aging Neurosci 2022; 14: 838214 DOI: 10.3389/fnagi.2022.838214.
- 247 Völter C, Götze L, Haubitz I. et al. Impact of Cochlear Implantation on Neurocognitive Subdomains in Adult Cochlear Implant Recipients. Audiol Neurootol 2021; 26: 236-245 DOI: 10.1159/000510855.
- 248 Völter C, Götze L, Dazert S. et al. Can cochlear implantation improve neurocognition in the aging population?. Clin Interv Aging 2018; 13: 701-712 DOI: 10.2147/CIA.S160517.
- 249 Huber M, Roesch S, Pletzer B. et al. Can Cochlear Implantation in Older Adults Reverse Cognitive Decline Due to Hearing Loss?. Ear Hear 2021; 42: 1560-1576 DOI: 10.1097/AUD.0000000000001049.
- 250 Knopke S, Schubert A, Häussler SM. et al. Improvement of Working Memory and Processing Speed in Patients over 70 with Bilateral Hearing Impairment Following Unilateral Cochlear Implantation. J Clin Med 2021; 10: 3421 DOI: 10.3390/jcm10153421.
- 251 Sarant J, Harris D, Busby P. et al. The Effect of Cochlear Implants on Cognitive Function in Older Adults: Initial Baseline and 18-Month Follow Up Results for a Prospective International Longitudinal Study. Front Neurosci 2019; 13: 789 DOI: 10.3389/fnins.2019.00789.
- 252 Zhan KY, Lewis JH, Vasil KJ. et al. Cognitive Functions in Adults Receiving Cochlear Implants: Predictors of Speech Recognition and Changes After Implantation. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2020; 41: e322-e329 DOI: 10.1097/MAO.0000000000002544.