Subscribe to RSS
DOI: 10.1055/a-1974-6535
Funktionelle Magnetresonanztomografie – Update
Update – functional Magnetic Resonance ImagingDie funktionelle Magnetresonanztomografie (fMRT) hat unser Verständnis der Hirnfunktion erweitert und trägt weiterhin zum Erkenntnisgewinn in der neurologischen und psychiatrischen Forschung bei. Die zunehmend hohe Auflösung der Daten, standardisierte Analyseprotokolle und innovative statistische Modelle – einschließlich maschinellem Lernen – öffnen Möglichkeiten zur Diagnostik und Therapie neuropsychiatrischer Erkrankungen.
Abstract
Functional magnetic resonance imaging (fMRI) contributes significantly to our understanding of neurological and psychiatric disorders. Its non-invasive nature, combined with advances in data acquisition and statistical analysis, including machine learning, makes it a valuable tool for investigating brain function in increasingly larger cohorts, including patients with more severe deficits. The aim of this article is to provide clinicians and clinical scientists with an update on new developments in the use of fMRI in neurology. After a brief historical background, the review covers the methodological basics, focusing on the three most commonly used paradigms: task fMRI, resting-state fMRI and movie fMRI. Moreover, applications of fMRT in neurological research are discussed, ranging from pre-surgical recordings in single patients, activity and connectivity analyses groups, up to predictive models based on large cohorts. By integrating multimodal approaches and applying them to larger and more diverse patient cohorts, fMRI may help to further refine neurophysiological and pathophysiological models. This could ultimately lead to more precise diagnostic procedures and personalised treatment options.
Publication History
Article published online:
06 December 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Ogawa S, Tank DW, Menon R. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci 1992; 89: 5951-5955
- 2 Caballero-Gaudes C, Reynolds RC. Methods for cleaning the BOLD fMRI signal. NeuroImage 2017; 154: 128-149
- 3 An H, Rajeev O, Huang D. et al. Influence of internal carotid artery stenosis, blood pressure, glycated hemoglobin, and hemoglobin level on fMRI signals of stroke patients. Neurol Res 2015; 37: 502-509
- 4 Scheeringa R, Bonnefond M, Mourik van T. et al. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cereb Cortex 2022; 33: 1537-1549
- 5 Kim S-G, Ashe J, Hendrich K. et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 1993; 261: 615-617
- 6 Rijntjes M, Weiller C. Funktionelle Bildgebung in der neurologischen Diagnostik. In: Berlit P, Hrsg. Klinische Neurologie. Berlin, Heidelberg: Springer; 2018: 1-15
- 7 Soares JM, Magalhães R, Moreira PS. et al. A Hitchhiker’s Guide to Functional Magnetic Resonance Imaging. Front Neurosci 2016; 10: 515
- 8 Hensel L, Tscherpel C, Freytag J. et al. Connectivity-related roles of contralesional brain regions for motor performance early after stroke. Cerebral Cortex 2021; 31: 993-1007
- 9 Eickhoff SB, Milham M, Vanderwal T. Towards clinical applications of movie fMRI. NeuroImage 2020; 217: 116860
- 10 Kröll J-P, Friedrich P, Li X. et al. Naturalistic viewing increases individual identifiability based on connectivity within functional brain networks. NeuroImage 2023; 273: 120083
- 11 Lado FA, Ahrens SM, Riker E. et al. Guidelines for specialized epilepsy centers. Neurology 2024; 102: e208087
- 12 Wilson W, Tehrani N, Pittman DJ. et al. Mapping interictal discharges using intracranial EEG-fMRI to predict postsurgical outcomes. Brain 2024; awae148
- 13 Koupparis A, Ellenrieder von N, Khoo HM. et al. Association of EEG-fMRI responses and outcome after epilepsy surgery. Neurology 2021; 97: e1523-e1536
- 14 Lynch CJ, Elbau I, Liston C. Improving precision functional mapping routines with multi-echo fMRI. Curr Opin Behav Sci 2021; 40: 113-119
- 15 Boutet A, Madhavan R, Elias GJB. et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat Commun 2021; 12: 3043
- 16 Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract 2020; 2: 17
- 17 Logothetis NK. What we can do and what we cannot do with fMRI. Nature 2008; 453: 869-878
- 18 Rehme AK, Eickhoff SB, Wang LE. et al. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage 2011; 55: 1147-1158
- 19 Volz LJ, Rehme AK, Michely J. et al. Shaping early reorganization of neural networks promotes motor function after stroke. Cerebral Cortex 2016; 26: 2882-2894
- 20 Blaschke SJ, Hensel L, Minassian A. et al. Translating functional connectivity after stroke. Stroke 2021; 52: 2948-2960
- 21 Blaschke SJ, Vlachakis S, Pallast N. et al. Transcranial direct current stimulation reverses stroke-induced network alterations in mice. Stroke 2023; 54: 2145-2155
- 22 Ereira S, Waters S, Razi A. et al. Early detection of dementia with default-mode network effective connectivity. Nat Ment Heal 2024; 2: 787-800
- 23 Bonkhoff AK, Grefkes C. Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence. Brain J Neurology 2022; 145: 457-475
- 24 Siegel JS, Ramsey LE, Snyder AZ. et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc National Acad Sci 2016; 113: E4367-E4376
- 25 Drenthen GS, Jansen JFA, Gommer E. et al. Predictive value of functional MRI and EEG in epilepsy diagnosis after a first seizure. Epilepsy Behav 2021; 115: 107651
- 26 Esteban O, Markiewicz CJ, Blair RW. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods 2019; 16: 111-116