Subscribe to RSS
DOI: 10.1055/a-1977-1006
Stereo- and Regioselective Synthesis of (E,E)-Dienes: Evolution from the Transition-Metal-Catalyzed Cross-Coupling to Titanium Alkoxide-Based Alkyne–Alkyne Reductive Coupling
We are grateful for the financial support provided by the Department of Chemistry at Boston University and support was obtained from the National Institute of General Medical Sciences (NIGMS) CMLD initiative (P50 GM067041) and RO1 (GM55740).
Abstract
The pursuit of step- and atom-economy in natural product and complex molecule syntheses continuously inspires the development of synthetic methodologies. In this context, to enable efficient synthesis of (E,E)-dienes as common structural subunits in natural products, our lab has established robust protocols based on modified Negishi cross-couplings and evolved them to more concise titanium-mediated alkyne–alkyne reductive coupling. In this review, we summarize the natural product synthesis driven methodology development and their applications in the total synthesis of complex molecules, focusing on the studies from our laboratory.
1 Introduction
2 Transition-Metal-Catalyzed Cross-Coupling in Natural Product Synthesis
2.1 Synthesis of Branched Trisubstituted Conjugated Dienes by Negishi Coupling
2.2 Stereo- and Regiocontrolled Synthesis of Branched Trisubstituted Conjugated Dienes by Modified Negishi Coupling
2.3 Enantioselective Total Synthesis of Reveromycin B by Drouet & Theodorakis
2.4 Enantioselective Synthesis of the Protein Phosphatase Inhibitor (–)-Motuporin by Hu & Panek
2.5 Total Synthesis of (–)-Callystatin A by Langille & Panek
2.6 Total Synthesis of Brevisamide by Lee & Panek
3 Titanium Alkoxide-Mediated Reductive Coupling in Natural Product Synthesis
3.1 Titanium Alkoxide-Mediated Alkyne–Alkyne Reductive Coupling
3.2 Total Synthesis of Callystatin A by Reichard & Micalizio
3.3 Total Synthesis of (–)-Virginiamycin M2 by Wu & Panek
3.4 Total Synthesis of Nuclear Factor of Activated T-Cells-68 (NFAT-68) by Cai & Panek
3.5 Titanium Alkoxide-Based Regioselective Alkyne–Alkyne Reductive Coupling Mediated by in situ Generated Arylamidate
4 Summary
Key words
cross-coupling - reductive coupling - (E,E)-diene - titanium alkoxide-mediated - total synthesisPublication History
Received: 05 October 2022
Accepted after revision: 11 November 2022
Accepted Manuscript online:
11 November 2022
Article published online:
30 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Burres NS, Premachandran U, Hoselton S, Cwik D, Hochlowski JE, Ye Q, Sunga GN, Karwowski JP, Jackson M, Whittern DN, McAlpine JB. J. Antibiot. (Tokyo) 1995; 48: 380
- 2 Delpierre GR, Eastwood FW, Gream GE, Kingston DG, Sarin PS, Todd L, Williams DH. J. Chem. Soc., Perkin Trans. 1 1966; 1653
- 3 Desilva ED, Williams DE, Andersen RJ, Klix H, Holmes CF. B, Allen TM. Tetrahedron Lett. 1992; 33: 1561
- 4 Hamill RL, Haney ME. Jr, Stamper M, Wiley PF. Antibiot Chemother (Northfield) 1961; 11: 328
- 5 Kobayashi M, Higuchi K, Murakami N, Tajima H, Aoki S. Tetrahedron Lett. 1997; 38: 2859
- 6 Micalizio GC, Hale SB. Acc. Chem. Res. 2015; 48: 663
- 7 Reichard HA, McLaughlin M, Chen MZ, Micalizio GC. Eur. J. Org. Chem. 2010; 3: 391
- 8 Shimp HL, Micalizio GC. Org. Lett. 2005; 7: 5111
- 9 Yoshida M, Kijima M, Akita M, Beppu T. J. Biol. Chem. 1990; 265: 17174
- 10 Zeng X, Qian M, Hu Q, Negishi E. Angew. Chem. Int. Ed. 2004; 43: 2259
- 11 Panek JS, Hu T. J. Org. Chem. 1997; 62: 4912
- 12 Panek JS, Hu T. J. Org. Chem. 1997; 62: 4914
- 13 Hu T, Panek JS. J. Org. Chem. 1999; 64: 3000
- 14 Hu T, Panek JS. J. Am. Chem. Soc. 2002; 124: 11368
- 15 Wu J, Panek JS. Angew. Chem. Int. Ed. 2010; 49: 6165
- 16 Wu J, Panek JS. J. Org. Chem. 2011; 76: 9900
- 17 Buchwald SL, Nielsen RB. J. Am. Chem. Soc. 1989; 111: 2870
- 18 Buchwald SL, Watson BT, Huffman JC. J. Am. Chem. Soc. 1987; 109: 2544
- 19 Mahandru GM, Liu G, Montgomery J. J. Am. Chem. Soc. 2004; 126: 3698
- 20 Mahandru GM, Liu G, Montgomery J. J. Am. Chem. Soc. 2004; 126: 15316
- 21 Huddleston RR, Jang HY, Krische MJ. J. Am. Chem. Soc. 2003; 125: 11488
- 22 Jang HY, Huddleston RR, Krische MJ. J. Am. Chem. Soc. 2004; 126: 466
- 23 Kong JR, Cho CW, Krische MJ. J. Am. Chem. Soc. 2005; 127: 11269
- 24 Komanduri V, Krische MJ. J. Am. Chem. Soc. 2006; 128: 16448
- 25 Itoh J, Han SB, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 6313
- 26 Guo YA, Lee W, Krische MJ. Chemistry 2017; 23: 2557
- 27 Liu P, McCarren P, Cheong PH, Jamison TF, Houk KN. J. Am. Chem. Soc. 2010; 132: 2050
- 28 Miller KM, Jamison TF. J. Am. Chem. Soc. 2004; 126: 15342
- 29 Miller KM, Luanphaisarnnont T, Molinaro C, Jamison TF. J. Am. Chem. Soc. 2004; 126: 4130
- 30 Patel SJ, Jamison TF. Angew. Chem. Int. Ed. 2003; 42: 1364
- 31 Luanphaisarnnont T, Ndubaku CO, Jamison TF. Org. Lett. 2005; 7: 2937
- 32 Moslin RM, Miller-Moslin K, Jamison TF. Chem. Commun. 2007; 4441
- 33 Miller KM, Huang WS, Jamison TF. J. Am. Chem. Soc. 2003; 125: 3442
- 34 Hamada T, Suzuki D, Urabe H, Sato F. J. Am. Chem. Soc. 1999; 121: 7342
- 35 Tanaka R, Hirano S, Urabe H, Sato F. Org. Lett. 2003; 5: 67
- 36 Perez LJ, Shimp HL, Micalizio GC. J. Org. Chem. 2009; 74: 7211
- 37 Bahadoor AB, Flyer A, Micalizio GC. J. Am. Chem. Soc. 2005; 127: 3694
- 38 Reichard HA, Micalizio GC. Angew. Chem. Int. Ed. 2007; 46: 1440
- 39 Reichard HA, Micalizio GC. Chem. Sci. 2011; 4: 573
- 40 Greszler SN, Reichard HA, Micalizio GC. J. Am. Chem. Soc. 2012; 134: 2766
- 41 Jeso V, Aquino C, Cheng X, Mizoguchi H, Nakashige M, Micalizio GC. J. Am. Chem. Soc. 2014; 136: 8209
- 42 Cai B, Evans RW, Wu J, Panek JS. Org. Lett. 2016; 18: 4304
- 43 Cai B, Panek JS. J. Am. Chem. Soc. 2020; 142: 3729
- 44 Wu J, Pu Y, Panek JS. J. Am. Chem. Soc. 2012; 134: 18440
- 45 Ryan J, Micalizio GC. J. Am. Chem. Soc. 2006; 128: 2764
- 46 Masse CE, Panek JS. Chem. Rev. 1995; 95: 1293
- 47 Huang HB, Panek JS. J. Am. Chem. Soc. 2000; 122: 9836
- 48 Huang HB, Spande TF, Panek JS. J. Am. Chem. Soc. 2003; 125: 626
- 49 Panek JS, Yang M. J. Am. Chem. Soc. 1991; 113: 9868
- 50 Jain NF, Takenaka N, Panek JS. J. Am. Chem. Soc. 1996; 118: 12475
- 51 Hu T, Takenaka N, Panek JS. J. Am. Chem. Soc. 2002; 124: 12806
- 52 Wrona IE, Gabarda AE, Evano G, Panek JS. J. Am. Chem. Soc. 2005; 127: 15026
- 53 Brawn RA, Panek JS. Org. Lett. 2007; 9: 2689
- 54 Lee J, Panek JS. Org. Lett. 2011; 13: 502
- 55 Wu J, Chen Y, Panek JS. Org. Lett. 2010; 12: 2112
- 56 Vanhorn DE, Negishi E. J. Am. Chem. Soc. 1978; 100: 2252
- 57 Negishi EO. N, King AO, Van Horn DE, Spiegel BI. J. Am. Chem. Soc. 1978; 100: 2254
- 58 Hart DW, Blackburn TF, Schwartz J. J. Am. Chem. Soc. 1975; 97: 679
- 59 Schwartz J, Labinger JA. Angew. Chem., Int. Ed. Engl. 1976; 15: 333
- 60 Drouet KE, Theodorakis EA. J. Am. Chem. Soc. 1999; 121: 456
- 61 Drouet KE, Theodorakis EA. Chem. Eur. J. 2000; 6: 1987
- 62 Coery EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769
- 63 Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc. 1986; 108: 7408
- 64 Valentekovich RJ, Schreiber SL. J. Am. Chem. Soc. 1995; 117: 9069
- 65 Langille NF, Panek JS. Org. Lett. 2004; 6: 3203
- 66 Lee J, Panek JS. Org. Lett. 2009; 11: 4390
- 67 Reichard HA, Rieger JC, Micalizio GC. Angew. Chem. Int. Ed. 2008; 47: 7837
- 68 Dossetter AG, Jamison TF, Jacobsen EN. Angew. Chem. Int. Ed. 1999; 38: 2398
- 69 Lowe JT, Panek JS. Org. Lett. 2008; 10: 3813
- 70 Li Q, Seiple IB. J. Am. Chem. Soc. 2017; 139: 13304
- 71 Li Q, Seiple IB. Tetrahedron 2019; 75: 3309
- 72 Frantz DE, Fassler R, Carreira EM. J. Am. Chem. Soc. 2000; 122: 1806
- 73 Brawn RA, Panek JS. Org. Lett. 2009; 11: 4362
- 74 Brawn RA, Panek JS. Org. Lett. 2009; 11: 473
- 75 Brawn RA, Panek JS. Org. Lett. 2010; 12: 4624
- 76 Brawn RA, Welzel M, Lowe JT, Panek JS. Org. Lett. 2010; 12: 336
- 77 Leitch DC, Beard JD, Thomson RK, Wright VA, Patrick BO, Schafer LL. Eur. J. Inorg. Chem. 2009; 2691
- 78 Payne PR, Thomson RK, Medeiros DM, Wan G, Schafer LL. Dalton Trans. 2013; 42: 15670
- 79 Yim JC. H, Bexrud JA, Ayinla RO, Leitch DC, Schafer LL. J. Org. Chem. 2014; 79: 2015
- 80 Ryken SA, Schafer LL. Acc. Chem. Res. 2015; 48: 2576