Angewandte Nuklearmedizin 2023; 46(02): 136-152
DOI: 10.1055/a-1979-9138
CME-Fortbildung

TI-RADS – Ein Update zur klinischen Anwendung

TI-RADS – An update on its clinical application
Julian Manuel Michael Rogasch
,
Philipp Seifert
,
Christoph Wetz
,
Simone Schenke

TI-RADS erlaubt eine evidenzbasierte und standardisierte sonografische Risikostratifizierung von Schilddrüsenknoten. Jedoch sollten Limitationen und Fallstricke beachtet werden. In diesem Artikel werden Tipps für einen differenzierten Umgang mit den Befundungskriterien gegeben. Der Beitrag wendet sich vor allem an Ärztinnen und Ärzte, die zumindest die Grundlagen von TI-RADS kennen und erste praktische Erfahrungen haben.



Publication History

Article published online:
26 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Symonds CJ, Seal P, Ghaznavi S. et al. Thyroid nodule ultrasound reports in routine clinical practice provide insufficient information to estimate risk of malignancy. Endocrine 2018; 61: 303-307
  • 2 Griffin AS, Mitsky J, Rawal U. et al. Improved Quality of Thyroid Ultrasound Reports After Implementation of the ACR Thyroid Imaging Reporting and Data System Nodule Lexicon and Risk Stratification System. J Am Coll Radiol 2018; 15: 743-748
  • 3 Rogasch JMM, Wetz C, Brenner W. TI-RADS und andere sonografische Klassifikationssystemefür Schilddrüsenknoten. Der Nuklearmediziner 2019; 42: e1-e1
  • 4 Kim PH, Suh CH, Baek JH. et al. Diagnostic Performance of Four Ultrasound Risk Stratification Systems: A Systematic Review and Meta-Analysis. Thyroid 2020; 30: 1159-1168
  • 5 Li W, Wang Y, Wen J. et al. Diagnostic Performance of American College of Radiology TI-RADS: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2021; 216: 38-47
  • 6 Paschke R, Schmid KW, Gärtner R. et al. Epidemiologie, Pathophysiologie, leitliniengerechte Diagnostik und Therapie des Schilddrüsenknotens. Med Klin (Munich) 2010; 105: 80-87
  • 7 Farahati J, Mäder U, Gilman E. et al. Changing trends of incidence and prognosis of thyroid carcinoma. Nuklearmedizin 2019; 58: 86-92
  • 8 Grussendorf M, Ruschenburg I, Brabant G. Malignancy rates in thyroid nodules: a long-term cohort study of 17,592 patients. Eur Thyroid J 2022; 11
  • 9 Seifert P, Schenke S, Zimny M. et al. Diagnostic Performance of Kwak, EU, ACR, and Korean TIRADS as well as ata guidelines for the ultrasound risk stratification of non-autonomously functioning thyroid nodules in a region with long history of iodine deficiency: A German multicenter trial. Cancers 2021; 13
  • 10 Giovanella L, Avram AM, Iakovou I. et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur J Nucl Med Mol Imaging 2019; 46: 2514-2525
  • 11 Schenke S, Seifert P, Zimny M. et al. Risk Stratification of Thyroid Nodules Using the Thyroid Imaging Reporting and Data System (TIRADS): The Omission of Thyroid Scintigraphy Increases the Rate of Falsely Suspected Lesions. J Nucl Med 2019; 60: 342-347
  • 12 Chami R, Moreno-Reyes R, Corvilain B. TSH measurement is not an appropriate screening test for autonomous functioning thyroid nodules: a retrospective study of 368 patients. Eur J Endocrinol 2014; 170: 593-599
  • 13 Treglia G, Trimboli P, Verburg FA. et al. Prevalence of normal TSH value among patients with autonomously functioning thyroid nodule. Eur J Clin Invest 2015; 45: 739-744
  • 14 Russ G, Bonnema SJ, Erdogan MF. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225-237
  • 15 Toledo SP, Lourenço Jr DM, Santos MA. et al. Hypercalcitoninemia is not pathognomonic of medullary thyroid carcinoma. Clinics (Sao Paulo) 2009; 64: 699-706
  • 16 Frank-Raue K, Schott M, Raue F. Recommendation for Calcitonin Screening in Nodular Goiter. Dtsch Med Wochenschr 2018; 143: 1065-1069
  • 17 Mian C, Perrino M, Colombo C. et al. Refining calcium test for the diagnosis of medullary thyroid cancer: cutoffs, procedures, and safety. J Clin Endocrinol Metab 2014; 99: 1656-1664
  • 18 Allelein S, Ehlers M, Morneau C. et al. Measurement of Basal Serum Calcitonin for the Diagnosis of Medullary Thyroid Cancer. Horm Metab Res 2018; 50: 23-28
  • 19 Schenke SA, Campennì A, Tuncel M. et al. Diagnostic Performance of (99m)Tc-Methoxy-Isobuty-Isonitrile (MIBI) for Risk Stratification of Hypofunctioning Thyroid Nodules: A European Multicenter Study. Diagnostics (Basel) 2022; 12
  • 20 Goodman A, Politz D, Lopez J. et al. Intrathyroid parathyroid adenoma: incidence and location--the case against thyroid lobectomy. Otolaryngol Head Neck Surg 2011; 144: 867-871
  • 21 Li W, Sun Y, Xu H. et al. Systematic Review and Meta-Analysis of American College of Radiology TI-RADS Inter-Reader Reliability for Risk Stratification of Thyroid Nodules. Front Oncol 2022; 12: 840516
  • 22 Anil G, Hegde A, Chong FH. Thyroid nodules: risk stratification for malignancy with ultrasound and guided biopsy. Cancer Imaging 2011; 11: 209-223
  • 23 Siebert SM, Gomez AJ, Liang T. et al. Diagnostic Performance of Margin Features in Thyroid Nodules in Prediction of Malignancy. AJR Am J Roentgenol 2018; 210: 860-865
  • 24 Tappouni RR, Itri JN, McQueen TS. et al. ACR TI-RADS: Pitfalls, Solutions, and Future Directions. Radiographics : a review publication of the Radiological Society of North America. Inc 2019; 39: 2040-2052
  • 25 Ha SM, Chung YJ, Ahn HS. et al. Echogenic foci in thyroid nodules: diagnostic performance with combination of TIRADS and echogenic foci. BMC Med Imaging 2019; 19: 28
  • 26 Sohn YM, Na DG, Paik W. et al. Malignancy risk of thyroid nodules with nonshadowing echogenic foci. Ultrasonography 2021; 40: 115-125
  • 27 Hoang JK, Middleton WD, Tessler FN. Update on ACR TI-RADS: Successes, Challenges, and Future Directions, From the AJR Special Series on Radiology Reporting and Data Systems. AJR Am J Roentgenol 2021; 216: 570-578
  • 28 Beland MD, Kwon L, Delellis RA. et al. Nonshadowing echogenic foci in thyroid nodules: are certain appearances enough to avoid thyroid biopsy?. J Ultrasound Med 2011; 30: 753-760
  • 29 Tessler FN, Middleton WD, Grant EG. Thyroid Imaging Reporting and Data System (TI-RADS): A User's Guide. Radiology 2018; 287: 29-36
  • 30 Wu H, Zhang B, Li J. et al. Echogenic foci with comet-tail artifact in resected thyroid nodules: Not an absolute predictor of benign disease. PLoS One 2018; 13: e0191505
  • 31 Na DG, Kim JH, Kim DS. et al. Thyroid nodules with minimal cystic changes have a low risk of malignancy. Ultrasonography 2016; 35: 153-158
  • 32 Wildman-Tobriner B, Buda M, Hoang JK. et al. Using Artificial Intelligence to Revise ACR TI-RADS Risk Stratification of Thyroid Nodules: Diagnostic Accuracy and Utility. Radiology 2019; 292: 112-119
  • 33 Xin Y, Liu F, Shi Y. et al. A Scoring System for Assessing the Risk of Malignant Partially Cystic Thyroid Nodules Based on Ultrasound Features. Front Oncol 2021; 11: 731779
  • 34 Park JM, Choi Y, Kwag HJ. Partially cystic thyroid nodules: ultrasound findings of malignancy. Korean J Radiol 2012; 13: 530-535
  • 35 Kim DW, Lee EJ, In HS. et al. Sonographic differentiation of partially cystic thyroid nodules: a prospective study. AJNR Am J Neuroradiol 2010; 31: 1961-1966
  • 36 Fukushima M, Fukunari N, Murakami T. et al. Reconfirmation of the accuracy of the taller-than-wide sign in multicenter collaborative research in Japan. Endocr J 2021; 68: 897-904
  • 37 Petersen M, Schenke SA, Zimny M. et al. Introducing a Pole Concept for Nodule Growth in the Thyroid Gland: Taller-than-Wide Shape, Frequency, Location and Risk of Malignancy of Thyroid Nodules in an Area with Iodine Deficiency. J Clin Med 2022; 11
  • 38 Bönhof J. TGC reloaded – Grundlagen, Anwendungen und Möglichkeiten. Weshalb ein Untersucher den Bildparameter Tiefenausgleich genau kennnen sollte. Ultraschall Med 2012; 33: A1110
  • 39 Durante C, Costante G, Lucisano G. et al. The natural history of benign thyroid nodules. Jama 2015; 313: 926-935
  • 40 Singh Ospina N, Maraka S, Espinosa DeYcaza A. et al. Diagnostic accuracy of thyroid nodule growth to predict malignancy in thyroid nodules with benign cytology: systematic review and meta-analysis. Clin Endocrinol (Oxf) 2016; 85: 122-131
  • 41 Schenke SA, Wuestemann J, Zimny M. et al. Ultrasound Assessment of Autonomous Thyroid Nodules before and after Radioiodine Therapy Using Thyroid Imaging Reporting and Data System (TIRADS). Diagnostics (Basel) 2020; 10
  • 42 Andrioli M, Valcavi R. The peculiar ultrasonographic and elastographic features of thyroid nodules after treatment with laser or radiofrequency: similarities and differences. Endocrine 2014; 47: 967-968
  • 43 Koo JH, Shin JH, Han BK. et al. Cystic thyroid nodules after aspiration mimicking malignancy: sonographic characteristics. J Ultrasound Med 2010; 29: 1415-1421
  • 44 Shen Y, Liu M, He J. et al. Comparison of Different Risk-Stratification Systems for the Diagnosis of Benign and Malignant Thyroid Nodules. Front Oncol 2019; 9: 378
  • 45 Schenke S, Klett R, Braun S. et al. Thyroiditis de Quervain. Are there predictive factors for long-term hormone-replacement?. Nuklearmedizin 2013; 52: 137-140
  • 46 Langer JE, Khan A, Nisenbaum HL. et al. Sonographic appearance of focal thyroiditis. AJR Am J Roentgenol 2001; 176: 751-754
  • 47 Hwang S, Shin DY, Kim EK. et al. Focal Lymphocytic Thyroiditis Nodules Share the Features of Papillary Thyroid Cancer on Ultrasound. Yonsei Med J 2015; 56: 1338-1344
  • 48 Trimboli P, Castellana M, Piccardo A. et al. The ultrasound risk stratification systems for thyroid nodule have been evaluated against papillary carcinoma. A meta-analysis. Rev Endocr Metab Disord 2021; 22: 453-460
  • 49 Castellana M, Piccardo A, Virili C. et al. Can ultrasound systems for risk stratification of thyroid nodules identify follicular carcinoma?. Cancer Cytopathol 2020; 128: 250-259
  • 50 Schenke SA, Klett R, Wagner PR. et al. Characteristics of different histological subtypes of thyroid nodules classified with 99mTc-methoxy-isobutyl-isonitrile imaging and Thyroid Imaging Reporting And Data System. Nucl Med Commun 2021; 42: 73-80
  • 51 Santana NO, Freitas RMC, Marcos VN. et al. Diagnostic performance of thyroid ultrasound in Hürthle cell carcinomas. Arch Endocrinol Metab 2019; 63: 300-305
  • 52 Lebbink CA, Links TP, Czarniecka A. et al. 2022 European Thyroid Association Guidelines for the management of pediatric thyroid nodules and differentiated thyroid carcinoma. Eur Thyroid J 2022; 11
  • 53 Kim PH, Yoon HM, Hwang J. et al. Diagnostic performance of adult-based ATA and ACR-TIRADS ultrasound risk stratification systems in pediatric thyroid nodules: a systematic review and meta-analysis. Eur Radiol 2021; 31: 7450-7463
  • 54 Ahmad H, Al-Hadidi A, Bobbey A. et al. Pediatric adaptions are needed to improve the diagnostic accuracy of thyroid ultrasound using TI-RADS. J Pediatr Surg 2021; 56: 1120-1125
  • 55 Chammas MC, Gerhard R, de Oliveira IR. et al. Thyroid nodules: evaluation with power Doppler and duplex Doppler ultrasound. Otolaryngol Head Neck Surg 2005; 132: 874-882
  • 56 Moon HJ, Kwak JY, Kim MJ. et al. Can vascularity at power Doppler US help predict thyroid malignancy?. Radiology 2010; 255: 260-269
  • 57 Yang GCH, Fried KO. Most Thyroid Cancers Detected by Sonography Lack Intranodular Vascularity on Color Doppler Imaging: Review of the Literature and Sonographic-Pathologic Correlations for 698 Thyroid Neoplasms. J Ultrasound Med 2017; 36: 89-94
  • 58 Lacout A, Marcy PY. Highlights on power Doppler US of thyroid malignancy. Radiology 2010; 257: 586-587
  • 59 Lacout A, Chevenet C, Salas J. et al. Thyroid Doppler US: Tips and tricks. J Med Imaging Radiat Oncol 2016; 60: 210-215
  • 60 Chammas MC, Moon HJ, Kim EK. Why do we have so many controversies in thyroid nodule Doppler US?. Radiology 2011; 259: 304
  • 61 Liu Q, Cheng J, Li J. et al. The diagnostic accuracy of contrast-enhanced ultrasound for the differentiation of benign and malignant thyroid nodules: A PRISMA compliant meta-analysis. Medicine (Baltimore) 2018; 97: e13325
  • 62 Xi X, Gao L, Wu Q. et al. Differentiation of Thyroid Nodules Difficult to Diagnose With Contrast-Enhanced Ultrasonography and Real-Time Elastography. Front Oncol 2020; 10: 112
  • 63 Wang Y, Dong T, Nie F. et al. Contrast-Enhanced Ultrasound in the Differential Diagnosis and Risk Stratification of ACR TI-RADS Category 4 and 5 Thyroid Nodules With Non-Hypovascular. Front Oncol 2021; 11: 662273
  • 64 Huang Y, Hong Y, Xu W. et al. Contrast-Enhanced Ultrasound Improves the Accuracy of the ACR TI-RADS in the Diagnosis of Thyroid Nodules Located in the Isthmus. Ultraschall Med 2022; 43: 599-607
  • 65 Hairu L, Yulan P, Yan W. et al. Elastography for the diagnosis of high-suspicion thyroid nodules based on the 2015 American Thyroid Association guidelines: a multicenter study. BMC Endocr Disord 2020; 20: 43
  • 66 Cantisani V, David E, Grazhdani H. et al. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall Med 2019; 40: 495-503
  • 67 Petersen M, Schenke SA, Firla J. et al. Shear Wave Elastography and Thyroid Imaging Reporting and Data System (TIRADS) for the Risk Stratification of Thyroid Nodules-Results of a Prospective Study. Diagnostics (Basel) 2022; 12
  • 68 Liu Y, Li X, Yan C. et al. Comparison of diagnostic accuracy and utility of artificial intelligence-optimized ACR TI-RADS and original ACR TI-RADS: a multi-center validation study based on 2061 thyroid nodules. Eur Radiol 2022; 32: 7733-7742
  • 69 Wu GG, Lv WZ, Yin R. et al. Deep Learning Based on ACR TI-RADS Can Improve the Differential Diagnosis of Thyroid Nodules. Front Oncol 2021; 11: 575166
  • 70 Wildman-Tobriner B, Taghi-Zadeh E, Mazurowski MA. Artificial Intelligence (AI) Tools for Thyroid Nodules on Ultrasound, From the AJR Special Series on AI Applications. AJR Am J Roentgenol 2022; 219: 1-8
  • 71 Tessler F. Short Call Abstracts. Poster 76. I-TIRADS (International Thyroid Imaging, Reporting, And Data System) Project: Roadmap And Status. Thyroid 2019; 29: A-177-A-205