Synthesis 2023; 55(08): 1213-1220
DOI: 10.1055/a-1988-5863
paper

A Convenient, Efficient, and Inexpensive Copper(I) Complex Catalyzed Sonogashira Cross-Coupling of o-Iodoanilines with Terminal Alkynes

Xia Chen
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China
b   Guizhou Key Laboratory of Coal Clean Utilization, Liupanshui, 553004, P. R. of China
,
Xiao-Yu Zhou
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China
b   Guizhou Key Laboratory of Coal Clean Utilization, Liupanshui, 553004, P. R. of China
› Author Affiliations
The authors are grateful to the National Natural Science Foundation of China (Nos. 22062012 and 22262019) and Scientific Research Projects of Liupanshui Normal University (LPSSYZDZK202201) for their financial support. This work was also supported by Guizhou Key Laboratory of Coal Clean Utilization (qiankehepingtairencai [2020]2001).


Abstract

Using (PPh3)2CuBH4 as catalyst, a convenient, efficient, and inexpensive palladium-free catalytic system has been developed to catalyze Sonogashira cross-coupling of o-iodoanilines with terminal alkynes under an air atmosphere to give a range of 2-ethynylaniline derivatives with up to 99% yield. This protocol is amenable to scale up. Notable features of the approach include good functional group tolerance, air atmosphere, and excellent yields.

Supporting Information



Publication History

Received: 01 November 2022

Accepted after revision: 28 November 2022

Accepted Manuscript online:
28 November 2022

Article published online:
21 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Norton RS, Wells RJ. J. Am. Chem. Soc. 1982; 104: 3628
    • 1b Yamamoto Y, Kurazono M. Bioorg. Med. Chem. Lett. 2007; 17: 1626
    • 1c Schwarz N, Alex K, Ali SI, Khedkar V, Tillack A, Beller M. Synlett 2007; 1091
    • 1d Nielsen SD, Ruhland T, Rasmussen LK. Synlett 2007; 443
    • 1e Della RC, Kneeteman M, Mancini P. Tetrahedron Lett. 2007; 48: 1435
    • 1f Cucek K, Vercek B. Synthesis 2008; 1741
    • 1g Bondzic BP, Farwick A, Liebich J, Elibracht P. Org. Biomol. Chem. 2008; 6: 3723
    • 1h Stuart DR, Laperle MB, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 1i Donaldo JR, Taylor RJ. K. Synlett 2009; 59
    • 1j Varma PP, Sherigara BS. Mahadevan K. M, Hulikal V. Synth. Commun. 2009; 39: 158
    • 1k Chen J, Chen J. -J, Yao X, Gao K. Org. Biomol. Chem. 2011; 9: 5334
    • 1l Zhang M.-Z, Jia C.-Y, Gu Y.-C, Mulholland N, Turner S, Beattie D, Zhang W.-H, Yang G.-F, Clough J. Eur. J. Med. Chem. 2017; 126: 669
    • 1m Baumann T, Brückner R. Angew. Chem. Int. Ed. 2019; 58: 4714
    • 1n Neto JS. S, Zeni G. Org. Chem. Front. 2020; 7: 155
    • 1o Ye Z.-S, Li J.-C, Wang G. Synthesis 2022; 54: 2133
  • 2 Fischer E, Jourdan F. Chem. Eur. 1883; 16: 2241 DOI: 10.1002/cber.188301602141.
  • 3 Bischler A. Ber. Dtsch. Chem. Ges. 1892; 25: 2860 DOI: 10.1002/cber.189202502123.
  • 4 Sundberg RJ, Yamazaki T. J. Org. Chem. 1967; 32: 290
  • 5 Gassman PG, Bergen TV, Gruetzmacher G. J. Am. Chem. Soc. 1973; 95: 6508
  • 6 Bartoli G, Palmieri G, Bosco M, Dalpozzo R. Tetrahedron Lett. 1989; 30: 2129
  • 7 Larock RC, Yum EK. J. Am. Chem. Soc. 1991; 113: 6689
  • 8 Fukuyama T, Chen X, Peng G. J. Am. Chem. Soc. 1994; 116: 3127
  • 9 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 4467
    • 10a Nicolaou KC, Dai W.-M. Angew. Chem., Int. Ed. Engl. 1991; 30: 1387
    • 10b Wagner FF, Comins DL. J. Org. Chem. 2006; 71: 8673
    • 10c Liu J, Lam JW, Tang BZ. Chem. Rev. 2009; 109: 5799
    • 10d Yu S, Haight A, Kotecki B, Wang L, Lukin K, Hill DR. J. Org. Chem. 2009; 74: 9539
  • 11 Li J.-H, Li J.-L, Wang D.-P, Pi S.-F, Xie Y.-X, Zhang M.-B, Hu X.-C. J. Org. Chem. 2007; 72: 2053
  • 12 Wu M, Mao J, Guo J, Ji S. Eur. J. Org. Chem. 2008; 4050
  • 13 Monnier F, Turtaut F, Duroure L, Taillefer M. Org. Lett. 2008; 10: 3203
  • 14 Mao J, Guo J, Ji S.-J. J. Mol. Catal. A: Chem. 2008; 284: 85
    • 15a Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
    • 15b Guan JT, Yu G.-A, Chen L, Weng TQ, Yuan JJ, Liu SH. Appl. Organomet. Chem. 2009; 23: 75
  • 16 Chen H.-J, Lin Z.-Y, Li M.-Y, Lian R.-J, Xue Q.-W, Chung J.-L, Chen S.-C, Chen Y.-J. Tetrahedron 2010; 66: 7755
  • 17 Lin C.-H, Wang Y.-J, Lee C.-F. Eur. J. Org. Chem. 2010; 4368
  • 18 Zuidema E, Bolm C. Chem. Eur. J. 2010; 16: 4181
    • 19a Yang D, Li B, Yang H, Fu H, Hu L. Synlett 2011; 702
    • 19b Santandrea J. Org. Lett. 2014; 16: 3892
  • 20 Lin C.-X, Zhu J.-F, Li Q.-S, Ao L.-H, Jin Y.-J, Xu F.-B, Hu F.-Z, Yuan Y.-F. Appl. Organomet. Chem. 2014; 28: 298
  • 21 Liori AA, Stamatopoulos IK, Papastavrou AT, Pinaka A, Vougioukalakis GC. Eur. J. Org. Chem. 2018; 6134
  • 22 Gujadhur RK, Bates CG, Venkataraman D. Org. Lett. 2001; 3: 4315
  • 23 Priyadarshini S, Joseph PJ. A, Srinivas P, Maheswaran H, Kantam ML, Bhargava S. Tetrahedron Lett. 2011; 52: 1615
  • 24 Zhao H, Huang B, Wu Y, Cai M. J. Organomet. Chem. 2015; 797: 21
  • 25 Wang B, Wang Y, Guo X, Jiao Z, Jin G, Guo X. Catal. Commun. 2017; 101: 36
  • 26 Nasresfahani Z, Kassaee MZ. J. Organomet. Chem. 2021; 937: 121703
  • 27 Sahu SK, Choudhury P, Behera PK, Bisoyi T, Sahu RR, Bisoyi A, Gorantla KR, Mallik BS, Mohapatra M, Rout L. New J. Chem. 2022; 46: 1650
  • 28 Sorrel TN, Spillane RJ. Tetrahedron Lett. 1978; 2473
    • 29a Fleet GW. J, Harding PJ. C. Tetrahedron Lett. 1979; 975
    • 29b Sorrell TN, Pearlman PS. J. Org. Chem. 1980; 45: 3449
    • 29c Fleet GW. J, Harding PJ. C, Whitcombe MJ. Tetrahedron Lett. 1980; 21: 4031
  • 30 Bhanushali MJ, Nandurkar NS, Bhor MD, Bhanage BM. Tetrahedron Lett. 2007; 48: 1273