Synthesis 2023; 55(10): 1570-1576
DOI: 10.1055/a-1988-5943
paper

Base-Mediated Direct Carboxylation of Heteroarenes with CO2

Cheng Y. Zhang
,
Yan J. Chen
,
Ya Y. Wang
,
Xin H. Peng


Abstract

A base medium system, generated from a synergistic reaction between Cs2CO3 and t-BuOK, has been used for the direct carboxylation of imidazoles with CO2 in good yield. Oxygen- and thia-heterocyclic arenes also undergo the carboxylation with CO2 with the same reactivity. Density functional theory calculations show that construction of t-BuOCs in situ is an endothermic process of 38.31 kJ/mol. t-BuOCs can promote the deprotonation of substrates by forming an active C–Cs bond via a rather low HOMO (t-BuOCs)–LUMO (imidazole) gap of 0.28 eV, which favors the electrophilic insertion of CO2 by releasing 94.13 kJ/mol of heat.

Supporting Information



Publication History

Received: 27 October 2022

Accepted after revision: 28 November 2022

Accepted Manuscript online:
28 November 2022

Article published online:
18 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Takenaka Y, Kiyosu T, Choi JC, Sakakuraa T, Yasuda H. Chem. Rev. 2007; 107: 2365
  • 2 Eghbali N, Li C. Green Chem. 2007; 9: 213
  • 3 Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Nielson JR, Sachtler WM, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W. Chem. Rev. 2001; 101: 953
  • 4 Zhang Z, Ju T, Miao M, Han J, Zhang Y, Zhu X, Ye J, Yu D, Zhi Y. Org. Lett. 2017; 19: 396
  • 5 Zhang W, Lv X. Chin. J. Catal. 2012; 33: 745
  • 6 Vidales AG, Bruant G, Omanovic S, Tartakovsky B. Electrochim. Acta 2021; 383: 138349
  • 7 Olah GA, Goeppert A, Prakash GK. J. Org. Chem. 2009; 74: 487
  • 8 Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
  • 9 Dalvie DK, Kalgutkar AS, Bakht SC. K, Obach RS, O’Donnell JP. Chem. Res. Toxicol. 2002; 15: 269
  • 10 Ackermann L. Angew. Chem. Int. Ed. 2011; 50: 3842
  • 11 Dalton DM, Rovis T. Nat. Chem. 2010; 2: 710
  • 12 Riduan SN, Zhang Y. Dalton Trans. 2010; 3347
  • 13 Aresta M, Dibenedetto A. Dalton Trans. 2007; 2975
  • 14 Aresta M, Angelini A. Top. Organomet. Chem. 2016; 53: 1
  • 15 Burkart MD, Hazari N, Tway CL, Zeitler EL. ACS Catal. 2019; 9: 7937
  • 16 Greenhalgh MD, Thomas SP. J. Am. Chem. Soc. 2012; 134: 11900
  • 17 Shi M, Nicholas KM. J. Am. Chem. Soc. 1997; 119: 5057
  • 18 Ochiai H, Jang M, Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 2681
  • 19 Kobayashi K, Kondo Y. Org. Lett. 2009; 11: 2035
  • 20 Ueno A, Takimoto M, Hou Z. Org. Biomol. Chem. 2017; 15: 2370
  • 21 Ueno A, Takimoto M, Wylie WN. O, Nishiura M, Ikariya T, Hou Z. Chem. Asian J. 2015; 10: 1010
  • 22 Gevorgyan A, Obst MF, Guttormsen Y, Maseras F, Hopmann KH, Bayer A. Chem. Sci. 2019; 10: 10072
  • 23 Boogaerts II. F, Nolan SP. J. Am. Chem. Soc. 2010; 132: 8858
  • 24 Zhang L, Cheng J, Ohishi T, Hou Z. Angew. Chem. Int. Ed. 2010; 49: 8670
  • 25 Mizuno H, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 1251
  • 26 Fu L, Li S, Cai Z, Ding Y, Guo XQ, Zhou LP, Yuan D, Sun QF, Li G. Nat. Catal. 2018; 1: 469
  • 27 Fenner S, Ackermann L. Green Chem. 2016; 18: 3804
  • 28 Zhang Z, Liao LL, Yan SS, Wang L, He YQ, Ye JH, Li J, Zhi YG, Yu DG. Angew. Chem. Int. Ed. 2016; 55: 7068
  • 29 Hughes RA, Moody CJ. Angew. Chem. Int. Ed. 2007; 46: 7930
  • 30 Liu Y, Zhang S, Abreu PJ. Nat. Prod. Rep. 2006; 23: 630
  • 31 Stanforth SP. Tetrahedron 1998; 54: 263
  • 32 Hassan J, Schulz E, Gozzi C, Lemaire M. J. Mol. Catal. A: Chem. 2003; 195: 125
  • 33 Hapke M, Brandt L, Lutzen A. Chem. Soc. Rev. 2008; 37: 2782
  • 34 Zhao D, You J, Hu C. Chemistry 2011; 17: 5466
  • 35 Fraser RR, Mansour TS, Savard S. Can. J. Chem. 1985; 63: 3505
  • 36 Bordwell FG, Drucker GE, Fried HE. J. Org. Chem. 2002; 46: 632
  • 37 Bordwell FG. Acc. Chem. Res. 2002; 21: 456
  • 38 Shen K, Fu Y, Li J, Liu L, Guo Q. Tetrahedron 2007; 63: 1568
  • 39 Tarakeshwar P, Lee JY, Kim KS. J. Phys. Chem. A 1998; 102: 2253
  • 40 Schafer A, Saak W, Haase D, Muller T. Angew. Chem. Int. Ed. 2012; 51: 2981
  • 41 Olah GA, Torok B, Joschek JP, Bucsi I, Esteves PM, Rasul G, Prakash GK. S. J. Am. Chem. Soc. 2002; 124: 11379
  • 42 Dang L, Lin Z, Marder TB. Organometallics 2010; 29: 917
  • 43 Banerjee A, Dick GR, Yoshino T, Kanan MW. Nature 2016; 531: 215
  • 44 Sandeli AK, Meribout NK, Benzerka S, Boulebd H, Gürbüz N, Özdemir N, Özdemir I. New J. Chem. 2021; 45: 17878
  • 45 Ueoka N, Oku T, Suzuki A. RSC Adv. 2019; 9: 24231
  • 46 Tsuchiya T, Kurita J, Takayama K. Chem. Pharm. Bull. 1980; 28: 2676
  • 47 Gautier FM, Jones S, Martin SJ. Org. Biomol. Chem. 2009; 7: 229
  • 48 Alberola A, Andres JM, Gonzalez A, Pedrosa R, Vicente M. J. Chem. Soc., Perkin Trans. 1 1990; 2681
  • 49 Lash TD, Hoehner MC. J. Heterocycl. Chem. 1991; 28: 1671
  • 50 Dondoni A, Fantin G, Fogagnolo M, Medici A, Pedrini P. J. Org. Chem. 1988; 53: 1748
  • 51 Zhu SJ, Dong J, Fu SM, Jiang HF, Zeng W. Org. Lett. 2011; 13: 4914
  • 52 Graubaum H, Martin D. J. Prakt. Chem. (Leipzig) 1986; 328: 515
  • 53 Koenig SG, Dankwardt JW, Liu YB, Zhao H, Singh SP. Tetrahedron Lett. 2010; 51: 6549