CC BY 4.0 · Organic Materials 2022; 4(04): 292-300
DOI: 10.1055/a-1990-3149
Organic Thin Films: From Vapor Deposition to Functional Applications
Short Review

A Review on Application of Poly(3,4-ethylenedioxythiophene) (PEDOT) in Rechargeable Batteries

a   Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
,
Shwetha Sunil Kumar
b   Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
,
a   Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
,
b   Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
› Author Affiliations


Abstract

Since the very first patent on poly(3,4-ethylenedioxythiophene) (PEDOT) that was filed in 1988, this polymer has been widely utilized and has achieved great success owing to its high electrical conductivity and excellent stability. The application of the conducting polymer, PEDOT, in renewable energy devices, especially rechargeable batteries, is attracting increasing attention due to its potential to solve the energy and climate crisis. In this review, we summarize the research over the past few decades directed toward the application of PEDOT in rechargeable batteries aimed at improving their electrochemical performance. We focus on PEDOT synthesized via oxidative chemical vapor deposition (oCVD), a relatively new process known for its ability to grow conducting polymer thin films with uniform, pinhole-free properties, and controllable thickness and conformality. For a comparison purpose, PEDOT synthesized via solution-based methods is also briefly summarized. Finally, future research directions for applying oCVD PEDOT in rechargeable batteries are discussed.

Introduction

PEDOT Synthesis Methods

Application of oCVD PEDOT in Rechargeable Batteries

Applications of Solution-Based PEDOT in Rechargeable Batteries

Conclusions and Outlook



Publication History

Received: 20 October 2022

Accepted after revision: 22 November 2022

Accepted Manuscript online:
30 November 2022

Article published online:
19 December 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rasmussen SC. Acetylene and Its Polymers. Springer; Cham: 2018: 125
  • 2 Jonas F, Heywang G, Schmidtberg W, Heinze J, Dietrich M. Google patents US5035926A, 1991
  • 3 Elschner A, Kirchmeyer S, Lovenich W, Merker U, Reuter K. Principles and Applications of an Intrinsically Conductive Polymer. CRC Press; Boca Raton: 2010
  • 4 Chen H, Li C. Chin. J. Polym. Sci. 2020; 38: 435
  • 5 Lima A, Schottland P, Sadki S, Chevrot C. Synth. Met. 1998; 93: 33
  • 6 Gleason KK. CVD Polymers: Fabrication of Organic Surfaces and Devices. John Wiley & Sons; Hoboken: 2015
  • 7 Smith PM, Su L, Gong W, Nakamura N, Reeja-Jayan B, Shen S. RSC Adv. 2018; 8: 19348
  • 8 Lock JP, Im SG, Gleason KK. Macromolecules 2006; 39: 5326
  • 9 Heydari Gharahcheshmeh M, Robinson MT, Gleason EF, Gleason KK. Adv. Funct. Mater. 2021; 31: 2008712
  • 10 Su L, Smith PM, Anand P, Reeja-Jayan B. ACS Appl. Mater. Interfaces 2018; 10: 27063
  • 11 Xu G, Liu Q, Lau KKS, Liu Y, Liu X, Gao H, Zhou X, Zhuang M, Ren Y, Li J, Shao M, Ouyang M, Pan F, Chen Z, Amine K, Chen G. Nat. Energy 2019; 4: 484
  • 12 Jiang Y, Liu T, Zhou Y. Adv. Funct. Mater. 2020; 30: 2006213
  • 13 Maziz A, Özgür E, Bergaud C, Uzun L. Sens. Actuators Rep. 2021; 3: 100035
  • 14 Winther-Jensen B, West K. Macromolecules 2004; 37: 4538
  • 15 Su L, Weaver JL, Groenenboom M, Nakamura N, Rus E, Anand P, Jha SK, Okasinski JS, Dura JA, Reeja-Jayan B. ACS Appl. Mater. Interfaces 2021; 13: 9919
  • 16 Su L, Choi P, Nakamura N, Charalambous H, Litster S, Ilavsky J, Reeja-Jayan B. Appl. Energy 2021; 299: 117315
  • 17 Zhang Y, Kim CS, Song HW, Chang S, Kim H, Park J, Hu S, Zhao K, Lee S. Energy Storage Mater. 2022; 48: 1
  • 18 Su L, Jha SK, Phuah XL, Xu J, Nakamura N, Wang H, Okasinski JS, Reeja-Jayan B. J. Mater. Sci. 2020; 55: 12177
  • 19 Moni P, Lau J, Mohr AC, Lin TC, Tolbert SH, Dunn B, Gleason KK. ACS Appl. Energy Mater. 2018; 1: 7093
  • 20 Heydari Gharahcheshmeh M, Wan CTC, Ashraf Gandomi Y, Greco KV, Forner Cuenca A, Chiang YM, Brushett FR, Gleason KK. Adv. Mater. Interfaces 2020; 7: 2000855
  • 21 Kuo Y, Wu C, Chang W, Yang C, Chou H. Electrochim. Acta 2015; 176: 1324
  • 22 Wang K, Li X, Chen J. Adv. Mater. 2015; 27: 527
  • 23 Arbizzani C, Balducci A, Mastragostino M, Rossi M, Soavi F. J. Power Sources 2003; 119: 695
  • 24 Her L, Hong J, Chang C. J. Power Sources 2006; 157: 457
  • 25 Lepage D, Michot C, Liang G, Gauthier M, Schougaard SB. Angew. Chem. 2011; 123: 7016
  • 26 Liu X, Li H, Li D, Ishida M, Zhou H. J. Power Sources 2013; 243: 374
  • 27 Wu F, Liu J, Li L, Zhang X, Luo R, Ye Y, Chen R. ACS Appl. Mater. Interfaces 2016; 8: 23095
  • 28 Yao Y, Liu N, McDowell MT, Pasta M, Cui Y. Energy Environ. Sci. 2012; 5: 7927
  • 29 Wang X, Wang B, Tang Y, Xu BB, Liang C, Yan M, Jiang Y. J. Mater. Chem. A 2020; 8: 3222
  • 30 Eliseeva SN, Kamenskii MA, Tolstopyatova EG, Kondratiev VV. Energies 2020; 13: 2163
  • 31 Shao D, Zhong H, Zhang L. ChemElectroChem 2014; 1: 1679
  • 32 Manthiram A, Fu Y, Chung S, Zu C, Su Y. Chem. Rev. 2014; 114: 11751
  • 33 Su D, Cortie M, Fan H, Wang G. Adv. Mater. 2017; 29: 1700587
  • 34 Su L, Charalambous H, Cui Z, Manthiram A. Energy Environ. Sci. 2022; 15: 843