RSS-Feed abonnieren
DOI: 10.1055/a-1992-6926
Synthesis of 2,3-Dihydrosiloles via Palladium-Catalyzed Heck-type Arylation of Silacyclopentenes with Aryl Iodides
This work was financially supported by grants from the National Natural Science Foundation of China (22072035 and 21901056) and the Zhejiang Provincial Natural Science Foundation of China (LY20B030006, LY21B030007, LR22B020002 and LY22B020006).

Abstract
The transition-metal-catalyzed synthesis of chiral silacycles is a challenging processes in organosilicon chemistry. Herein, we report a facile and regioselective synthesis of a novel class of 2,3-dihydrosilole derivatives with good yields via the palladium-catalyzed Heck-type reaction of silacyclopentenes (SCPs) with aryl iodides. Preliminary investigations on the enantioselective version of this palladium-catalyzed Heck-type process reveal that the presence of N-Boc-l-proline allows the diastereo- and enantioselective formation of chiral 2,3-dihydrosilole derivatives bearing both carbon and silicon-stereogenic centers.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1992-6926.
- Supporting Information
Publikationsverlauf
Eingereicht: 04. November 2022
Angenommen nach Revision: 05. Dezember 2022
Accepted Manuscript online:
05. Dezember 2022
Artikel online veröffentlicht:
10. Januar 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Cusak A. Chem. Eur. J. 2012; 18: 5800
- 1b Nakao Y, Sahoo AK, Imanaka H, Yada A, Hiyama T. Pure Appl. Chem. 2006; 78: 435
- 1c Suzawa K, Ueno M, Wheatley AE. H, Kondo Y. Chem. Commun. 2006; 42: 4850
- 1d Bai D, Han S, Lu Z.-H, Wang S. Can. J. Chem. 2008; 86: 230
- 1e Showell GA, Mills JS. Drug Discovery Today 2003; 8: 551
- 1f Tacke R, Becker B, Schomburg D. Appl. Organomet. Chem. 1989; 3: 133
- 1g Ma J.-H, Li L, Sun Y.-L, Xu Z, Bai X.-F, Yang K.-F, Cao J, Cui Y.-M, Yin G.-W, Xu L.-W. Sci. China Chem. 2020; 63: 1082 ; and references cited therein
- 2a Han J, Qin Y, Sun Y, Zhao D. Sci. Sin. Chim. 2019; 49: 672
- 2b Mu Q, Chen J, Xia C, Xu L. Coord. Chem. Rev. 2018; 374: 93
- 3a Stevens AC, Pagenkopf BL. Org. Lett. 2010; 12: 3658
- 3b Miyazaki K, Yamane Y, Yo R, Uno H, Kamimura A. Beilstein J. Org Chem. 2013; 9: 1326
- 3c Tok OL, Bould J, Dušek M, Cvačka J. J. Org. Chem. 2021; 86: 3871
- 4a Sudo T, Asao N, Yamamoto Y. J. Org. Chem. 2000; 65: 8919
- 4b Reid WB, McAtee JR, Watson DA. Organometallics 2019; 38: 3796
- 4c Ouyang K, Liang Y, Xi Z. Org. Lett. 2012; 14: 4572
- 4d Yin K, Zhao S, Qin Y, Chen S, Li B, Zhao D. ACS Catal. 2022; 12: 13999
- 5a Heck RR, Nolley JJ. P. J. Org. Chem. 1972; 37: 2320
- 5b Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
- 6a Cartney DM, Guity PJ. Chem. Soc. Rev. 2011; 40: 5122
- 6b McManus HA, Guiry PJ. Chem. Rev. 2004; 104: 4151
- 6c Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 6d Xie J.-Q, Liang R.-X, Jia Y.-X. Chin. J. Chem. 2021; 39: 710
- 6e Elwahy AH. M, Abdelhamid IA, Shaaban MR. ChemistrySelect 2021; 6: 13664
- 6f Nasri S, Bayat M, Mirzaei F. Top. Curr. Chem. 2021; 379: 25
- 6g Ju B, Kong W. Asian J. Org. Chem. 2020; 9: 1154
- 6h Kaur N, Kaur G. Mater. Today Proc. 2022; 48: 1283
- 6i Paul D, Das S, Saha S, Sharma H, Goswami RK. Eur. J. Org. Chem. 2021; 2057
- 6j Rayadurgam J, Sana S, Sasikumarc M, Gu Q. Org. Chem. Front. 2021; 8: 384
- 7a Ozawa F, Kubo A, Hayashi T. J. Am. Chem. Soc. 1991; 113: 1417
- 7b Ozawa F, Kubo A, Hayashi T. Catalytic Asymmetric Heck Reaction . In Selectivity in Catalysis . Davis ME, Suib SL. ACS Symposium Series 517; American Chemical Society; Washington DC: 1993: 75-85
- 7c de Azambuja F, Carmona RC, Chorro TH. D, Heerdt G, Correia CR. D. Chem. Eur. J. 2016; 22: 11205
- 8a Jeffery T. Tetrahedron Lett. 1999; 40: 1673
- 8b Karabelas K, Hallberg A. Tetrahedron Lett. 1985; 26: 3131
- 8c Karabelas K, Westerlund C, Hallberg A. J. Org. Chem. 1985; 50: 3896
- 9a Wang X, Zheng Z, Xie J, Gu X, Mu Q, Yin G, Ye F, Xu Z, Xu L. Angew. Chem. Int. Ed. 2020; 59: 790
- 9b Wang Q, Ye F, Cao J, Xu Z, Zheng Z, Xu L. Catal. Commun. 2020; 138: 105950
- 9c Tang RH, Xu Z, Nie YX, Xiao XQ, Yang KF, Xie JL, Guo B, Yin GW, Yang XM, Xu LW. iScience 2020; 23: 101268
- 9d Xie J.-L, Xu Z, Zhou H.-Q, Nie Y.-X, Cao J, Yin G.-W, Bouillon J.-P, Xu L.-W. Sci. China Chem. 2021; 64: 761
- 9e Wang X, Huang SS, Zhang FJ, Xie JL, Li Z, Xu Z, Ye F, Xu LW. Org. Chem. Front. 2021; 8: 6577
- 10 Coeffard V, Guiry PJ. Curr. Org. Chem. 2010; 14: 212
- 11 Ye F, Xu Z, Xu LW. Acc. Chem. Res. 2021; 54: 452
- 12a Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
- 12b Reznikov AN, Ashatkina MA, Klimochkin YN. Org. Biomol. Chem. 2021; 19: 5673
- 13a Li Z, Wang X, Cui YM, Ma JH, Fang LL, Han LL, Yang Q, Xu Z, Xu LW. Chem. Eur. J. 2021; 27: 4336
- 13b Lin Y, Ma W.-Y, Xu Z, Zheng Z.-J, Cao J, Yang K.-F, Cui Y.-M, Xu L.-W. Chem. Asian J. 2019; 14: 2082
- 13c Sun QY, Li Z, Xu Z, Zheng ZJ, Cao J, Yang KF, Cui YM, Xu LW. Chem. Commun. 2019; 55: 6229
- 14 Kotha S, Manivannan E, Ganesh T, Sreenivasachary N, Deb A. Synlett 1999; 1618
For reviews, see:
For reviews, see:
For recent examples, see:
For recent advances on C–H activation in our group, see: