CC BY-NC-ND 4.0 · Synthesis 2023; 55(11): 1770-1782
DOI: 10.1055/a-1993-6899
paper
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award

Control over Stereogenic N–N Axes by Pd-Catalyzed 5-endo-Hydroaminocyclizations

Valeriia Hutskalova
,
We gratefully acknowledge the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (175746) and the National Centre of Competence in Research, Molecular Systems Engineering (NCCR MSE) (182895) for financial support. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 (H2020) research and innovation programme (grant agreement No. 101002471).


Dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award

Abstract

A novel approach for the stereoselective construction of N–N atropisomeric compounds by a Pd-catalyzed 5-endo-hydroaminocyclization is described herein. A broad range of bisheterocycles , connected by a configurationally stable N–N stereogenic axis, were prepared with catalyst control in enantioenriched form.

Supporting Information



Publication History

Received: 23 September 2022

Accepted after revision: 06 December 2022

Accepted Manuscript online:
06 December 2022

Article published online:
16 January 2023

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Clayden J, Moran WJ, Edwards PJ, Laplante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
    • 1b Glunz PW. Bioorg. Med. Chem. Lett. 2018; 28: 53
    • 1c Toenjes ST, Gustafson JL. Future Chem. 2018; 10: 409
    • 2a Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 2b Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 2c Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
  • 3 Gustafson JL, Lim D, Miller SJ. Science 2010; 328: 1251
  • 4 Wang JZ, Zhou J, Xu C, Sun H, Kürti L, Xu QL. J. Am. Chem. Soc. 2016; 138: 5202
  • 5 Rokade BV, Guiry PJ. ACS Catal. 2018; 8: 624
  • 6 Sweetman BA, Guiry PJ. Tetrahedron 2018; 74: 5567
  • 7 Zhang P, Wang XM, Xu Q, Guo CQ, Wang P, Lu CJ, Liu RR. Angew. Chem. Int. Ed. 2021; 60: 21718
  • 8 Rodríguez-Salamanca P, Fernández R, Hornillos V, Lassaletta JM. Chem. Eur. J. 2022; 28: e202104442
  • 9 Di Iorio N, Righi P, Mazzanti A, Mancinelli M, Ciogli A, Bencivenni G. J. Am. Chem. Soc. 2014; 136: 10250
  • 10 Hirai M, Terada S, Yoshida H, Ebine K, Hirata T, Kitagawa O. Org. Lett. 2016; 18: 5700
  • 11 Bai HY, Tan FX, Liu TQ, Zhu GD, Tian JM, Ding TM, Chen ZM, Zhang SY. Nat. Commun. 2019; 10: 3063
  • 12 Frey J, Malekafzali A, Delso I, Choppin S, Colobert F, Wencel-Delord J. Angew. Chem. Int. Ed. 2020; 59: 8844
  • 13 Vaidya SD, Toenjes ST, Yamamoto N, Maddox SM, Gustafson JL. J. Am. Chem. Soc. 2020; 142: 2198
  • 14 Chang C, Adams R. J. Am. Chem. Soc. 1931; 53: 2353
    • 15a Xu Z, Baunach M, Ding L, Hertweck C. Angew. Chem. Int. Ed. 2012; 51: 10293
    • 15b Zhang Q, Mándi A, Li S, Chen Y, Zhang W, Tian X, Zhang H, Li H, Zhang W, Zhang S, Ju J, Kurtán T, Zhang C. Eur. J. Org. Chem. 2012; 2012: 5256
    • 16a Dai J, Dan W, Schneider U, Wang J. Eur. J. Med. Chem. 2018; 157: 622
    • 16b Blair LM, Sperry J. J. Nat. Prod. 2013; 76: 794
  • 17 Liu XY, Zhang YL, Fei X, Liao LS, Fan J. Chem. Eur. J. 2019; 25: 4501
  • 18 Antognazza P, Benincori T, Mazzoli S, Sannicolo F, Pilati T. Phosphorus, Sulfur Silicon Relat. Elem. 1999; 146: 405
  • 19 Mei GJ, Wong JJ, Zheng W, Nangia AA, Houk KN, Lu Y. Chem 2021; 7: 2743
  • 20 Lin W, Zhao Q, Li Y, Pan M, Yang C, Yang GH, Li X. Chem. Sci. 2022; 13: 141
  • 21 Pan M, Shao YB, Zhao Q, Li X. Org. Lett. 2022; 24: 374
    • 22a Xu Q, Zhang H, Ge FB, Wang XM, Zhang P, Lu CJ, Liu RR. Org. Lett. 2022; 24: 3138
    • 22b Wang XM, Zhang P, Xu Q, Guo CQ, Zhang DB, Lu CJ, Liu RR. J. Am. Chem. Soc. 2021; 143: 15005
    • 23a Gao Y, Wang LY, Zhang T, Yang BM, Zhao Y. Angew. Chem. Int. Ed. 2022; 61: e202200371
    • 23b Chen KW, Chen ZH, Yang S, Wu SF, Zhang YC, Shi F. Angew. Chem. Int. Ed. 2022; 61: e202116829
    • 24a Portolani C, Centonze G, Luciani S, Pellegrini A, Righi P, Mazzanti A, Ciogli A, Sorato A, Bencivenni G. Angew. Chem. Int. Ed. 2022; 61: e202209895
    • 24b Zhang P, Wang X.-M, Feng J, Lu C.-J, Li Y, Liu RR. Angew. Chem. Int. Ed. 2022; 61: e202212101
    • 25a Ototake N, Morimoto Y, Mokuya A, Fukaya H, Shida Y, Kitagawa O. Chem. Eur. J. 2010; 16: 6752
    • 25b Morimoto Y, Shimizu S, Mokuya A, Ototake N, Saito A, Kitagawa O. Tetrahedron 2016; 72: 5221
    • 26a Alsabeh PG, Lundgren RJ, Longobardi LE, Stradiotto M. Chem. Commun. 2011; 47: 6936
    • 26b Halland N, Nazare M, Alonso J, R’Kyek O, Lindenschmidt A. Chem. Commun. 2011; 47: 1042